$ \newcommand\nil{\mathrm{nil}} \newcommand\gfrak{\mathfrak{g}} \newcommand\A{\mathrm{A}} \newcommand\B{\mathrm{B}} \newcommand\C{\mathrm{C}} \newcommand\D{\mathrm{D}} \newcommand\E{\mathrm{E}} \newcommand\F{\mathrm{F}} \newcommand\G{\mathrm{G}} \newcommand\H{\mathrm{H}} \newcommand\h{\mathrm{h}} \newcommand\K{\mathrm{K}} \newcommand\L{\mathrm{L}} \newcommand\M{\mathrm{M}} \newcommand\R{\mathrm{R}} \newcommand\t{\mathrm{t}} \newcommand\T{\mathrm{T}} \newcommand{\bA}{\mathbf{A}} \newcommand{\bF}{\mathbf{F}} \newcommand{\bG}{\mathbf{G}} \newcommand{\bH}{\mathbf{H}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bW}{\mathbf{W}} \newcommand{\Gm}{\bG_m} \newcommand\Ascr{\mathcal{A}} \newcommand\Cscr{\mathcal{C}} \newcommand\Dscr{\mathcal{D}} \newcommand\Escr{\mathcal{E}} \newcommand\Fscr{\mathcal{F}} \newcommand\Kscr{\mathcal{K}} \newcommand\Lscr{\mathcal{L}} \newcommand\Oscr{\mathcal{O}} \newcommand\Perf{\mathrm{Perf}} \newcommand\Perfscr{\mathcal{P}\mathrm{erf}} \newcommand\Acscr{\mathcal{A}\mathrm{c}} \newcommand\heart{\heartsuit} \newcommand\cn{\mathrm{cn}} \newcommand\op{\mathrm{op}} \newcommand\gr{\mathrm{gr}} \newcommand\Gr{\mathrm{Gr}} \newcommand\fil{\mathrm{fil}} \newcommand\Ho{\mathrm{Ho}} \newcommand\dR{\mathrm{dR}} \newcommand\dRhat{\widehat{\dR}} \newcommand\we{\simeq} \newcommand\Sym{\mathrm{Sym}} \newcommand\HH{\mathrm{HH}} \newcommand\HC{\mathrm{HC}} \newcommand\HP{\mathrm{HP}} \newcommand\TC{\mathrm{TC}} \newcommand\TR{\mathrm{TR}} \newcommand\THH{\mathrm{THH}} \newcommand{\bMap}{\mathbf{Map}} \newcommand{\End}{\mathrm{End}} \newcommand{\Mod}{\mathrm{Mod}} \newcommand{\coMod}{\mathrm{coMod}} \newcommand{\Fun}{\mathrm{Fun}} \newcommand{\bMap}{\mathbf{Map}} \newcommand\bE{\mathbf{E}} \newcommand\bZ{\mathbf{Z}} \newcommand\bS{\mathbf{S}} \newcommand\bQ{\mathbf{Q}} \newcommand\bC{\mathbf{C}} \newcommand\bN{\mathbf{N}} \newcommand\bAM{\mathbf{AM}} \newcommand\bLM{\mathbf{LM}} \newcommand\Spec{\mathrm{Spec}\,} \newcommand\CAlg{\mathrm{CAlg}} \newcommand\aCAlg{\mathfrak{a}\CAlg} \newcommand\dCAlg{\mathfrak{d}\CAlg} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Sscr}{\mathcal{S}} \newcommand{\poly}{\mathrm{poly}} \newcommand{\perf}{\mathrm{perf}} \newcommand\Sp{\mathrm{Sp}} \newcommand\CycSp{\mathrm{CycSp}} \newcommand\TCart{\mathrm{TCart}} \newcommand\Fr{\mathrm{Fr}} \newcommand\Br{\mathrm{Br}} $

Achim Krause, Thomas Nikolaus, and I have uploaded our research announcement [1] on the $\K$-groups of $\bZ/p^n$ to the arXiv. We constructed an algorithm to compute the syntomic cohomology $\bZ_p(i)$ in the sense of Bhatt–Morrow–Scholze of $\bZ/p^n$ or more generally $\Oscr_K/\varpi^n$ where $K$ is a finite extension of $\bQ_p$ and $\varpi$ is a uniformizer of the ring of integers $\Oscr_K$.

The BMS spectral sequence in this case collapses entirely and hence the algorithm gives a way to compute the $p$-adic $\K$-groups:

\[\K_{2i-1}(\Oscr_K/\varpi^n;\bZ_p)\cong\H^1(\bZ_p(i)(\Oscr_K/\varpi^n))\]

for $i\geq 1$ and

\[\K_{2i-2}(\Oscr_K/\varpi^n;\bZ_p)\cong\H^2(\bZ_p(i)(\Oscr_K/\varpi^n))\]

for $i\geq 2$. The $\K$-groups are torsion and the prime-to-$p$ information is governed by Quillen’s computation of the $\K$-theory of finite fields.

See the announcement for tables of computations and references. After running our algorithm in a bunch of cases, we conjectured that in fact the even groups vanish for $i$ sufficiently large. This is indeed the case.

Theorem (Even vanishing theorem). If

\[i\geq\frac{p^2}{(p-1)^2}\left(p^{\lceil\tfrac{n}{e}\rceil}-1\right),\]

then $\K_{2i-2}(\Oscr_K/\varpi^n)=0$.

Recall that Bhatt and Scholze proved the odd vanishing conjecture, namely that odd $\K$-groups vanish and even $\K$-groups are $p$-torsion free quasisyntomic-locally . (This had been proved in characteristic $p$ first in BMS2.) Bhatt and Scholze also proved a more precise statement which showed in particular that $\K_*(\Oscr_{\bC_p}/p^n;\bZ_p)$ is concentrated in even degrees. Combined with our theorem, one obtains the following consequence.

Corollary. If $i\geq\frac{p^2(p^n-1)}{(p-1)^2}$, then $\K_{2i-2}(\Oscr_{\bC_p}/p^n;\bZ_p)$ is $p$-torsion free.

Added 03 May 2022: Bhargav Bhatt pointed out that the stronger form of the odd vanishing conjecture can be used to make the proof below easier.

Added 14 May 2022: Bhargav pointed out again that there is an easier argument! I was worried about something the even groups in $\K_{2i-2}(\Oscr_K/\varpi^m)$ somehow accumulating to contribute to $\H^2(\bZ_p(i)(\Oscr_{\bC_p}/p^n))$, which is not possible since for any quasiregular semiperfectoid ring $R$ the $p$-adic syntomic complexes $\bZ_p(i)(R)$ have cohomology concentrated in degrees $[0,1]$. So, this `corollary’ is really an easier corollary of the results of Bhatt–Morrow–Scholze and Bhatt–Scholze.

References

[1] Antieau, Krause, and Nikolaus, The K-theory of $\bZ/p^n$ – announcement, arXiv:2204.03420.

[2] Bhatt, Scholze, Prisms and prismatic cohomology, arXiv:1905.08229.