$ \newcommand\nil{\mathrm{nil}} \newcommand\gfrak{\mathfrak{g}} \newcommand\A{\mathrm{A}} \newcommand\B{\mathrm{B}} \newcommand\C{\mathrm{C}} \newcommand\D{\mathrm{D}} \newcommand\E{\mathrm{E}} \newcommand\F{\mathrm{F}} \newcommand\G{\mathrm{G}} \newcommand\H{\mathrm{H}} \newcommand\h{\mathrm{h}} \newcommand\K{\mathrm{K}} \newcommand\L{\mathrm{L}} \newcommand\M{\mathrm{M}} \newcommand\R{\mathrm{R}} \newcommand\t{\mathrm{t}} \newcommand\T{\mathrm{T}} \newcommand{\bA}{\mathbf{A}} \newcommand{\bF}{\mathbf{F}} \newcommand{\bG}{\mathbf{G}} \newcommand{\bH}{\mathbf{H}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bW}{\mathbf{W}} \newcommand{\Gm}{\bG_m} \newcommand\Ascr{\mathcal{A}} \newcommand\Cscr{\mathcal{C}} \newcommand\Dscr{\mathcal{D}} \newcommand\Escr{\mathcal{E}} \newcommand\Fscr{\mathcal{F}} \newcommand\Kscr{\mathcal{K}} \newcommand\Lscr{\mathcal{L}} \newcommand\Oscr{\mathcal{O}} \newcommand\Perf{\mathrm{Perf}} \newcommand\Perfscr{\mathcal{P}\mathrm{erf}} \newcommand\Acscr{\mathcal{A}\mathrm{c}} \newcommand\heart{\heartsuit} \newcommand\cn{\mathrm{cn}} \newcommand\op{\mathrm{op}} \newcommand\gr{\mathrm{gr}} \newcommand\Gr{\mathrm{Gr}} \newcommand\fil{\mathrm{fil}} \newcommand\Ho{\mathrm{Ho}} \newcommand\dR{\mathrm{dR}} \newcommand\dRhat{\widehat{\dR}} \newcommand\we{\simeq} \newcommand\Sym{\mathrm{Sym}} \newcommand\HH{\mathrm{HH}} \newcommand\HC{\mathrm{HC}} \newcommand\HP{\mathrm{HP}} \newcommand\TC{\mathrm{TC}} \newcommand\TR{\mathrm{TR}} \newcommand\THH{\mathrm{THH}} \newcommand{\bMap}{\mathbf{Map}} \newcommand{\End}{\mathrm{End}} \newcommand{\Mod}{\mathrm{Mod}} \newcommand{\coMod}{\mathrm{coMod}} \newcommand{\Fun}{\mathrm{Fun}} \newcommand{\bMap}{\mathbf{Map}} \newcommand\bE{\mathbf{E}} \newcommand\bZ{\mathbf{Z}} \newcommand\bS{\mathbf{S}} \newcommand\bQ{\mathbf{Q}} \newcommand\bC{\mathbf{C}} \newcommand\bN{\mathbf{N}} \newcommand\bAM{\mathbf{AM}} \newcommand\bLM{\mathbf{LM}} \newcommand\Spec{\mathrm{Spec}\,} \newcommand\CAlg{\mathrm{CAlg}} \newcommand\aCAlg{\mathfrak{a}\CAlg} \newcommand\dCAlg{\mathfrak{d}\CAlg} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Sscr}{\mathcal{S}} \newcommand{\poly}{\mathrm{poly}} \newcommand{\perf}{\mathrm{perf}} \newcommand\Sp{\mathrm{Sp}} \newcommand\CycSp{\mathrm{CycSp}} \newcommand\TCart{\mathrm{TCart}} \newcommand\Fr{\mathrm{Fr}} \newcommand\Br{\mathrm{Br}} $

Matthew Morrow, Akhil Mathew, and I have posted our new paper [1] on the algebraic $\K$-theory of smooth algebras over perfectoid rings. The main results all say that the $p$-adic $\K$-theory of smooth algebras over perfectoid rings which contain a perfectoid valuation ring behaves like the $\K$-theory of smooth commutative rings.

Here are the main theorems, in the mixed characteristic case.

Theorem. Let $\Oscr$ be a perfectoid valuation ring of mixed characteristic and let $A$ be a perfectoid $\Oscr$-algebra. If $R$ is a smooth $A$-algebra of fiber dimension $\leq d$, then

  • $\K(A;\bZ_p)\rightarrow\K(A[\tfrac{1}{p}];\bZ_p)$ is $0$-truncated,
  • $\K(R;\bZ_p)\rightarrow\K(R[\tfrac{1}{p}];\bZ_p)$ is $d$-truncated,
  • $\K(R;\bZ_p)\we\mathrm{KH}(R;\bZ_p)$,
  • and if $A=\Oscr$, then in fact $\K(R;\bZ_p)\we\K(R[\frac{1}{p}];\bZ_p)$.

Note that recent results of Clausen–Bhatt–Mathew and Land–Mathew–Meier–Tamme imply that the $\K(1)$-local $\K$-theory of $R$ and $R[\tfrac{1}{p}]$ agree for any commutative ring $R$. However, to get the concrete bounds as in the theorem requires further hypotheses.

The strategy of the proofs is to first use $\mathrm{arc}_p$-descent to reduce the case of general perfectoid $\Oscr$-algebras to perfectoid valuation rings. Then, a combination of commutative algebra results and classical arguments in higher algebraic K-theory are used to show that $p$-torsion modules do not contribute to $K$-theory.

One of the ideas in the paper is to `tilt’ the stable $\infty$-category of perfect $p$-torsion complexes to reduce to a characteristic $p$ situation, where we argue directly.

A similar result was proved by Nizioł in [2] in the case where $A=\Oscr$ is the ring of integers in the $p$-completed algebraic closure of $\overline{\bQ}_p$ and was used by her to give a new proof of the crystalline comparison theorem in $p$-adic Hodge theory.

One question in commutative algebra came up in our work which we did not answer.

Question. Suppose that $R$ is a commutative ring and that $t\in R$ is a non-zero divisor such that $R/t$ is weakly regular stable coherent. Does every finitely presented projective $R[\tfrac{1}{t}]$-module $M$ extend to a finitely presented and $t$-torsion free $R$-module?

At some point, we make an argument with a Bass-style delooping argument which would be more straightforward if the answer to the question is `yes’. If you know, please email me and I’ll include an answer here.

References

[1] Antieau, Mathew, and Morrow, The K-theory of perfectoid rings, arXiv:2203.06472.

[2] Nizioł, Crystalline conjecture via K-theory, Ann. sci. Ec. Norm. Sup. (4), 31 (1998), 659-681.