$
\newcommand\A{\mathrm{A}}
\newcommand\C{\mathrm{C}}
\newcommand\D{\mathrm{D}}
\newcommand\E{\mathrm{E}}
\newcommand\F{\mathrm{F}}
\newcommand\G{\mathrm{G}}
\newcommand\H{\mathrm{H}}
\newcommand\h{\mathrm{h}}
\newcommand\K{\mathrm{K}}
\newcommand\L{\mathrm{L}}
\newcommand\M{\mathrm{M}}
\newcommand\t{\mathrm{t}}
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bG}{\mathbf{G}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\Gm}{\bG_m}
\newcommand\Ascr{\mathcal{A}}
\newcommand\Cscr{\mathcal{C}}
\newcommand\Dscr{\mathcal{D}}
\newcommand\Escr{\mathcal{E}}
\newcommand\Kscr{\mathcal{K}}
\newcommand\Lscr{\mathcal{L}}
\newcommand\Oscr{\mathcal{O}}
\newcommand\Perfscr{\mathcal{P}\mathrm{erf}}
\newcommand\Acscr{\mathcal{A}\mathrm{c}}
\newcommand\heart{\heartsuit}
\newcommand\cn{\mathrm{cn}}
\newcommand\op{\mathrm{op}}
\newcommand\gr{\mathrm{gr}}
\newcommand\Gr{\mathrm{Gr}}
\newcommand\fil{\mathrm{fil}}
\newcommand\Ho{\mathrm{Ho}}
\newcommand\dR{\mathrm{dR}}
\newcommand\HH{\mathrm{HH}}
\newcommand\HC{\mathrm{HC}}
\newcommand\HP{\mathrm{HP}}
\newcommand\TC{\mathrm{TC}}
\newcommand\TP{\mathrm{TP}}
\newcommand{\bMap}{\mathbf{Map}}
\newcommand{\End}{\mathrm{End}}
\newcommand{\Mod}{\mathrm{Mod}}
\newcommand{\coMod}{\mathrm{coMod}}
\newcommand{\Fun}{\mathrm{Fun}}
\newcommand{\bMap}{\mathbf{Map}}
\newcommand\bE{\mathbf{E}}
\newcommand\bZ{\mathbf{Z}}
\newcommand\bAM{\mathbf{AM}}
\newcommand\bLM{\mathbf{LM}}
\newcommand\Spec{\mathrm{Spec}}
\newcommand\CAlg{\mathrm{CAlg}}
\newcommand\aCAlg{\mathfrak{a}\CAlg}
\newcommand\dCAlg{\mathfrak{d}\CAlg}
$
Details
Times: MWF 1200.
Place: Lunt 103 for lectures and discussion sections.
Office hours: Wednesdays at 1600 in Lunt 304.
Textbooks: Aluffi’s Algebra: Chapter 0, Atiyah and Macdonald’s Introduction to
commutative algebra, and Weibel’s An introduction to homological algebra.
Catalog description: Wedderburn theory. Commutative algebra: prime ideals; localization. Homological algebra: linear algebra, abelian categories, complexes and homology, projective and injective resolutions, homotopies. Additional topics as permits.
Full syllabus: on Canvas.
Calendar
03/26. The first day of class.
05/24. The last day of class.
05/01. Midterm in class.
06/03. Final exam 1200-1400 in Lunt 103.