Perfectoid signature and an application to étale fundamental groups

Hanlin Cai ${ }^{1}$, Seungsu Lee ${ }^{1}$, Linquan Ma^{2} Karl Schwede ${ }^{1}$, Kevin Tucker, ${ }^{3}$

${ }^{1}$ University of Utah ${ }^{2}$ Purdue University $\quad{ }^{3}$ University of Illinois at Chicago
Northwestern University
May 2023
Based on arXiv:2209.04046

Detecting singularities

Let (R, \mathfrak{m}) be a Noetherian local ring.

Theorem (Kunz)

In char. $p>0$, F Frobenius
R is regular
$\Leftrightarrow F_{*} R=R^{1 / p} \quad$ fflat R-module
$\Leftrightarrow R_{\text {perf }}=\operatorname{colim}_{e} F_{*}^{e} R$ fflat R-module.

Detecting singularities part 2

Since mixed characteristic conference:
Theorem (Bhatt-lyengar-Ma)
In mixed characteristic ($0, p$),
R is regular
\Leftrightarrow there is $R \rightarrow B$ with B perfectoid, fflat / R.
(also an almost fflat version)
Instead of detecting sings, measure them.

Suppose ($R, \mathfrak{m}, k=k^{p}$) is complete Noetherian local domain characteristic $p>0, \operatorname{dim} R=d$.
If R is regular, $F_{*}^{e} R=R^{1 / p^{e}}$ is free over R of rank $p^{\text {ed }}$.

$$
\# \text { gens } R^{1 / p^{e}}=\operatorname{length}\left(R^{1 / p^{e}} / \mathfrak{m} R^{1 / p^{e}}\right)=p^{e d} .
$$

Do an example! (on a board)
If $R^{1 / p^{e}}$ is not free, then since it is free of rank $p^{e d}$ at generic point, we see:

$$
\# \text { gens } R^{1 / p^{e}}=\operatorname{length}\left(R^{1 / p^{e}} / \mathfrak{m} R^{1 / p^{e}}\right)>p^{e d} .
$$

Definition (Kunz, Monsky)

If $J \subseteq R$ is \mathfrak{m}-primary, Hilbert-Kunz mulitiplicity

$$
e_{H K}(J, R)=\lim _{e \rightarrow \infty} \frac{\operatorname{length}\left(R^{1 / p^{e}} / J R^{1 / p^{e}}\right)}{p^{e d}} .
$$

If R is regular $\& J=\mathfrak{m}, e_{\text {НК }}(R):=e_{H K}(\mathfrak{m}, R)=1$.
If R not regular \& $J=\mathfrak{m}, e_{\text {НК }}(R)>1$. (Watanabe-Yoshida)
Bigger $\mathrm{e}_{H K}(R)$ means MORE singular R.
$e_{\text {HK }}(R)$ can be irrational (Brenner).

Suppose ($R, \mathfrak{m}, k=k^{p}$) is complete Noetherian local domain characteristic $p>0, \operatorname{dim} R=d$.

Write

$$
\begin{gathered}
R^{1 / p^{e}}=R^{\oplus a_{e}} \oplus M_{e} \quad M_{e} \text { no free } R \text {-summands } \\
a_{e}=\text { length } R / I_{e}, \\
I_{e}:=\left\{x \in R \mid R \xrightarrow{1 \mapsto x^{1 / p e}} R^{1 / p^{e}} \text { does not split }\right\}
\end{gathered}
$$

(Sketch why, on a board!)

F-signature

You can ask what percentage of $R^{1 / p^{e}}$ is free, asymptotically.
Definition (Smith-Van den Bergh, Huneke-Leuschke, Tucker)
F-signature is defined

$$
s(R):=\lim _{e \rightarrow \infty} \frac{a_{e}}{p^{e d}} .
$$

The "fraction" of $R^{1 / p^{e}}$ that is free, asymptotically. $0 \leq s(R) \leq 1$.

Smaller $s(R)$ means MORE singular R.
R regular $\Leftrightarrow s(R)=1$ (Watanabe-Yoshida)

Example (ADE surface singularities)

For surface singularities, $p>5$.

type	equation	$s(R)$	$e_{H K}(R)$
$\left(A_{n}\right)$	$x y+z^{n+1}$	$\frac{1}{n-1}$	$2-s(R)$
$\left(D_{n}\right)$	$x^{2}+y z^{2}+y^{n-1}$	$\frac{1}{4(n-2)}$	$2-s(R)$
$\left(E_{6}\right)$	$x^{2}+y^{3}+z^{4}$	$\frac{1}{24}$	$2-s(R)$
$\left(E_{7}\right)$	$x^{2}+y^{3}+y z^{3}$	$\frac{1}{48}$	$2-s(R)$
$\left(E_{8}\right)$	$x^{2}+y^{3}+z^{5}$	$\frac{1}{120}$	$2-s(R)$

$e_{H K}=2-s(R)$ since mult. 2 hypersurface (only mult. 2)

A more interesting example

Example (Monsky)

$k=\bar{k}$ char 2 .

$$
R=k[x, y, z] /\left(\left(\lambda^{2}+\lambda\right) x^{2} y^{2}+z^{4}+x y z^{2}+\left(x^{3}+y^{3}\right) z\right)
$$

then $e_{H K}(R)=3+4^{-m}$ where $m=\left[\mathbb{F}_{2}(\lambda): \mathbb{F}_{2}\right]$.
If λ transcendental, $e_{H K}(R)=3$. Otherwise it's >3 (depends on degree of λ / \mathbb{F}_{p}).
le, this is a family over Spec $k[\lambda]$. Then very general fiber is least singular. Lack of semi-continuity.

Theorem (Aberbach-Leuschke)

$s(R)>0 \Leftrightarrow R$ is strongly F-regular.

- Whatever strong F-regularity is, you can define it as above.
- strong F-regular is char. $p>0$ analog of klt sings/ \mathbb{C}.
- Expect $s(R)>0$ means R behaves like klt sings.

There was conj. (Kollár), $\left|\pi_{1}\left(\partial B \cap X_{\text {nonsing }}\right)\right|<\infty, B$ small ball around klt singularity $x \in X / \mathbb{C}$.

Theorem (Braun, Xu-Zhuang, cf. Xu, Bhatt-Gabber-Olsson)
$\left|\pi_{1}\left(\partial B \cap X_{\text {nonsing }}\right)\right| \leq d^{d} / \widehat{\operatorname{vol}}(x, X)$ (norm. vol., cf. Li-Liu-Xu, etc)

An application

- If $(R, \mathfrak{m}, k) \subseteq(S, \mathfrak{n}, I)$ finite split étale-in-codim. $=1$, then:

$$
s(R) \cdot[K(S): K(R)]=s(S) \cdot[I: k] .
$$

(Say a word about the proof, on a board!)
Corollary (Carvajal-Rojas - S. - Tucker)
If $(R, \mathfrak{m}, k=\bar{k})$ is strongly F-regular, then

$$
\mid \pi_{1}^{e ́ t}\left((\text { Spec } \widehat{R})_{\text {nonsing }}\right) \mid \leq 1 / s(R)
$$

Our goal, ($R=\widehat{R}, \mathfrak{m}, k=k^{p}$) mixed characteristic.

- Find analog of $e_{H K}(J, R)$.
- Find analog of $s(R)$.
- Prove analogous results from char $p>0$.
- Conclude étale fun. group. $(k=\bar{k})$ for "nice" R

$$
\mid \pi_{1}^{\text {ét }}\left((\text { Spec } R)_{\text {nonsing }}\right) \mid \leq 1 / s(R)<\infty
$$

No Frobenius! (or resolution of singularities).
An idea! Instead of $R^{1 / p^{e}}$, maybe we can use $R_{\text {perf }}$ in char.
$p>0$.
.... then in mixed char. use perfectoidization (Bhatt-Scholze).

Recall normalized length (Faltings, cf. Gabber-Ramero).
$A=k \llbracket x_{1}, \ldots, x_{n} \rrbracket \mathrm{OR} \quad A=W(k) \llbracket p=x_{1}, x_{2}, \ldots, x_{n} \rrbracket$ Consider:
$A \rightarrow A_{e}:=A\left[x_{1}^{1 / p^{e}}, \ldots, x_{d}^{1 / p^{e}}\right] \quad(e=\infty$ ok, but p-complete $)$.
(Write A_{∞} defn on board, completed)

- M is an A_{∞}-mod., $\mathfrak{m}^{N} \cdot M=0$. Define $\lambda_{\infty}(M)$.
- If $M^{\prime \prime}$ f.p. $M^{\prime \prime}=M_{e}^{\prime \prime} \otimes_{A_{e}} A_{\infty}$,

$$
\lambda_{\infty}\left(M^{\prime \prime}\right)=\text { length }\left(M_{e}^{\prime \prime}\right) / p^{e d}
$$

- If M^{\prime} f.g, $\lambda_{\infty}\left(M^{\prime}\right)=\inf _{M^{\prime \prime} \rightarrow M^{\prime}} \lambda_{\infty}\left(M^{\prime \prime}\right)$.
- In general $\lambda_{\infty}(M)=\sup _{M^{\prime} \hookrightarrow M} \lambda_{\infty}\left(M^{\prime}\right)$.

Theorem (Cai-Lee-Ma-S.-Tucker)

If $\left(R, \mathfrak{m}, k=k^{p}\right)$ complete Noeth. local domain char. $p>0$ Fix $A \subseteq R$ Noether norm. (Cohen). Then

$$
\begin{gathered}
e_{H K}(J, R)=\lambda_{\infty}\left(R_{\text {perf }} / J R_{\text {perf }}\right) \quad \text { and } \\
s(R)=\lambda_{\infty}\left(R_{\text {perf }} / l_{\infty}\right)
\end{gathered}
$$

where $I_{\infty}=\left\{x \in R_{\text {perf }} \mid R \xrightarrow{1 \rightarrow x} R_{\text {perf }}\right.$ not split $\}$.
Note $I_{\infty}=U_{e} I_{e}^{1 / p^{e}}$.
($R, \mathfrak{m}, k=k^{p}$) mixed char. complete Noetherian domain.

- Fix $A:=W(k) \llbracket x_{2}, \ldots, x_{d} \rrbracket \subseteq R$.
- Let $R_{\text {perfd }}^{X}:=\left(R \otimes_{A} A_{\infty}\right)_{\text {perfd }}$ (Bhatt-Scholze).
- Note $R_{\text {perfd }}^{\underline{X}}$ is a ring, an A_{∞}-module. Can take normalized length of A_{∞}-mods as before.

Definition

Perfectoid Hilbert-Kunz: $e_{\text {perfd }}^{X}(J, R):=\lambda_{\infty}\left(R_{\text {perfd }}^{X} / J R_{\text {perfd }}^{X}\right)$.

$$
\begin{aligned}
& \text { Perfectoid signature: } s_{\text {perfd }}^{X}(R):=\lambda_{\infty}\left(R_{\text {perfd }}^{X} / I_{\infty}\right), \\
& \text { where } I_{\infty}=\left\{x \in R_{\text {perfd }}^{X} \mid R \xrightarrow{1 \mapsto x} R_{\text {perfd }}^{X} \text { not split }\right\} .
\end{aligned}
$$

Agrees with char. $p>0$ definitions.
(Write on board!)

Theorem (CLM_T)

- $e_{\text {perfd }}^{\underline{X}}(R):=e_{\text {perfd }}^{\underline{X}}(\mathfrak{m}, R) \geq 1$.
- $e_{\text {perfd }}(R)=1 \Leftrightarrow R$ is regular.
- If $J=\left(f_{1}, \ldots, f_{d}\right), \sqrt{J}=\mathfrak{m}$ (param. ideal), then $e_{\text {perfd }}^{X}(J)=e(J, R)$ (Hilbert-Samuel multiplicity).
- If $I \subseteq J \mathfrak{m}$-primary then

$$
e_{\text {perfd }}^{X}(I, R)=e_{\text {perfd }}^{X}(J, R) \quad \Leftrightarrow \quad I B=J B
$$

for some perfectoid BCM (Big Cohen-Macaulay) B.
(Exist by André, Gabber. Note $\widehat{R^{+}}$is one such by Bhatt.)
$e_{\text {perfd }}(R)$ bigger means R is more singular.

Questions

Questions

- independent of $A \subseteq R, \underline{x}=x_{2}, \ldots x_{d}$?
- semi-continuity Zariski topology? Even:

$$
\begin{aligned}
& e_{\text {perfd }}(R) \geq e_{\text {perfd }}\left(\widehat{R_{Q}}\right) \\
& s_{\text {perfd }}(R) \leq s_{\text {perfd }}\left(\widehat{R_{Q}}\right)
\end{aligned}
$$

- fflat ascent? (Lech)

$$
\begin{gathered}
(R, \mathfrak{m}) \stackrel{\text { fflat }}{\longrightarrow}(S, \mathfrak{n}) \\
e_{\text {perfd }}(R) \leq e_{\text {perfd }}(S) ?
\end{gathered}
$$

Definition

R is weakly BCM-regular if $R \hookrightarrow B$ splits/pure for every perfectoid BCM (Big Cohen-Macaulay) B.
R is $B C M$-regular if it is also \mathbb{Q}-Gorenstein (ie, hypersurface) For pair $(R, \Delta \geq 0) B C M$-regular makes sense (log \mathbb{Q}-Gor.).
(BCM-regular \Rightarrow KLT, $=$ strongly F-regular in char $p>0$).
Example: log regular $\Rightarrow(R, \Delta)$ BCM-regular for some Δ.
Example: $\mathbb{Z}_{p} \llbracket x, y, z \rrbracket /\left(p^{3}+x^{3}+y^{3}+z^{3}\right)$ BCM-regular $(p>3)$.
Example: $\mathbb{Z}_{p} \llbracket y, z \rrbracket /\left(p^{2} z-x(x-z)(x+z)\right)$ not BCM-regular.

Properties of perfectoid signature

Detects regularity.
Theorem (CLM_T)
$0 \leq s_{\text {perfd }}^{X}(R) \leq 1$.
R is regular $\Leftrightarrow s_{\text {perfd }}^{X}(R)=1$
Detects BCM-regularity.

Theorem (CLM_T)

If $s_{\text {perfd }}^{\underline{X}}(R)>0$, then R weakly BCM-regular.
If $R($ or $(R, \Delta))$ is BCM-regular, then $s_{\text {perfd }}^{X}(R)>0$.
(Q-gor. \Rightarrow equiv.)

Transformation rules

Suppose $(R, \mathfrak{m}, k) \subseteq(S, \mathfrak{n}, I)$ finite, étale in codim 1 .
Theorem (CLM_T)

$$
s_{\text {perfd }}^{X}(R) \cdot[K(S): K(R)]=s_{\text {perfd }}^{X}(S) \cdot[I: K] .
$$

Transformation rule also works for μ_{n}-in-1-covers even if $p \mid n$ (for good choice of A, \underline{x}).

Proof idea.

- assume $k=l$.
- Extension is gen. free rank $[K(S): K(R)]:=r$.
- $S_{\text {perfd }}^{X} / I_{\infty}^{R} S_{\text {perfd }}^{X} \stackrel{g \text {-almost }}{\simeq} S_{\text {perfd }}^{X} / I_{\infty}^{S}$. So have same normalized length.
- Want to compare $M=S_{\text {perfd }}^{X}(R) / I_{\infty}^{R} S_{\text {perfd }}^{X}$ and $N=\bigoplus^{r} R_{\text {perfd }}^{X} / l_{\infty}^{R}$. Work $\bmod p . M \rightarrow N \rightarrow M$.

An example

As a consequence:

Example (ADE surface singularities)

S regular dim 3., $p>5$.
$R=S / f, \mathfrak{m}_{S}=(x, y, z)$.

type	f	$s_{\text {perfd }}^{X}(R)$	$e_{\text {perfd }}^{X}(R)$
$\left(A_{n}\right)$	$x y+z^{n+1}$	$\frac{1}{n+1}$	$2-s(R)$
$\left(D_{n}\right)$	$x^{2}+y z^{2}+y^{n-1}$	$\frac{1}{4(n-2)}$	$2-s(R)$
$\left(E_{6}\right)$	$x^{2}+y^{3}+z^{4}$	$\frac{1}{24}$	$2-s(R)$
$\left(E_{7}\right)$	$x^{2}+y^{3}+y z^{3}$	$\frac{1}{48}$	$2-s(R)$
$\left(E_{8}\right)$	$x^{2}+y^{3}+z^{5}$	$\frac{1}{120}$	$2-s(R)$

$e_{H K}=2-s(R)$ since mult. 2 hypersurface (only mult. 2)
For some cases, need careful choice $A \subseteq R$.
(Uses Carvajal-Rojas - Ma - Polstra - S. - Tucker).

Theorem (CLM_T)

Suppose ($R, \mathfrak{m}, k=\bar{k}$) complete Noeth. local. Set $U=(\operatorname{Spec} R)_{\text {nonsing }}$. Then

$$
\left|\pi_{1}^{e t}(U)\right| \leq 1 / s_{\text {perfd }}^{x}(R) .
$$

In particular, if R is $B C M$-regular, then it's finite.
Furthermore, for careful choice of A,

$$
|C|(R)_{\text {tors }} \mid \leq 1 / s_{\text {perfd }}^{X}(R) .
$$

Hence, R is $B C M$-regular \Rightarrow torsion in class group is finite.
Other variants, like Greb-Kebekus-Peternell / \mathbb{C} also work.

Thank you for listening!

Thank Bhargav for math we used!

