Diffracting prisms: resolution of a quandary Arthur Ogus

May 16, 2023

Evanston

- Theme and variations
- Actions on envelopes
- Quandaries and their resolutions

Outline

Actions on cohomology and on categories of crystals

- Organizers
 - For inviting me to speak here, and in particular:
 - For giving me a chance to thank everyone.

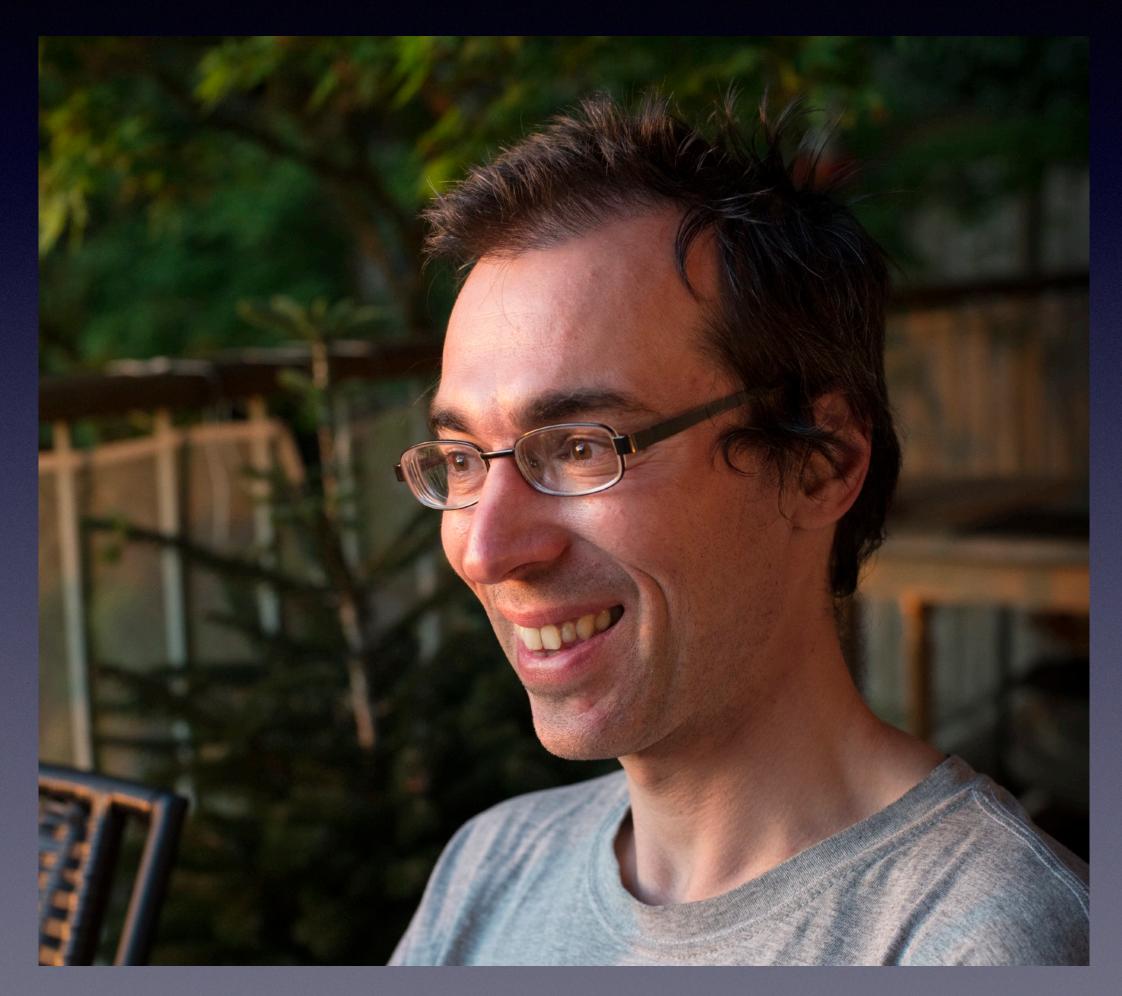
Thanks

- First to tell me about new developments, constant companion.
- On hearing my idea about diffracting prisms: •
 - "Your idea will never work."
 - "I do not have the motivation to study your approach."
 - "In your next lecture, be sure to explain that I do not approve."
 - His opinion was justified, as you will see.

Luc Illusie

Vadim Vologodsky

- Consultation and inspiration, past and present:
 - Joint work on the Cartier transform
 - Categorification of Drinfeld's idea
 - Patient explanations of his work and of that of Drinfeld and Bhatt-Lurie.
- On hearing my idea about diffracting prisms:
 - "It would be great if your idea works."
 - "I agree. Here is a general conjecture."



Bhargav Bhatt

- Inspiration for all my work over the last five years:
- New construction of the DR-Witt complex
- Prisms
 - 2019 : ``You will like this:" Prismatic cohomology and Higgs fields
- On hearing my idea about diffracting prisms:
 - 2023 "To reconcile our different approaches, come to Princeton."
 - "I am writing to share....another construction of the Sen operator....motivated by Arthur's idea of using a flat connection..., but wanted to do it intrinsically...."

Theme and Variations

Hodge theory as G_m actions

Classical Case:

- X/C smooth, projective
 - Hodge: $R\Gamma(\Omega^{\bullet}_{X/C}, d) \sim R\Gamma(\oplus \Omega^{a}_{X/C}[-a])$
 - $u \in G_m$ acts on $R\Gamma(\Omega_X^a)$: multiplication by u^a .
 - Simpson:
 - $\operatorname{MIC}_{ss}(X/C) \equiv \operatorname{HIG}_{ss}(X/C)$
 - Hence: G_m -action on these categories.

• $\nabla: E \to \Omega^1_{Y/S} \otimes E$ is • a connection if $\nabla(fe) = df \otimes e + f \nabla(e)$ • a λ -connection if $\nabla(fe) = \lambda df \otimes e + f \nabla(e)$ • a Higgs field if $\nabla(fe) = f \nabla(e)$ (and $\nabla^2 = 0$) • equivalent: $S^{\bullet}T_{Y/S}$ - module structure on E.

Recal:

Early *p*-adic and char. *p* results

- X/k smooth, k perfect of char. p, S := Spf(W), $\overline{S} := Spec(k)$
 - $F_{X/\overline{S}}: X \to X^{(p)}$ the relative Frobenius morphism.
- Deligne-Illusie: A lifting of X to W_2 induces an isomorphism:
 - $F_{X/S^*}(\tau_{< p}\Omega^{\bullet}_{X/k}) \sim \bigoplus_{a < p} \Omega^a_{X(p)/k}[-a] \text{ (in } \mathcal{D}_{\operatorname{coh}}(O_{X(p)})).$
 - Better: $\sim \bigoplus_{a < p} \mathscr{H}^a(\Omega^{\bullet}_{X/S})[-a]$
 - $\Omega^{\bullet}_{X/k} \sim \bigoplus_a \Omega^a_{X^{(p)}/k}[-a]$ (in $D_{\operatorname{coh}}(O_{X^{(p)}})$). (Given also a lifting of $F_{X/\overline{S}}$.)

• Cartier transform (O. - Vologodsky): • $\operatorname{MIC}_{qn}^{< p}(X/\overline{S}) \equiv \operatorname{HIG}_{qn}^{< p}(X^{(p)}/\overline{S})$, or, better: • $\operatorname{MIC}_{\operatorname{qn}}^{\gamma}(X/\overline{S}) \equiv \operatorname{HIG}_{\operatorname{qn}}^{\gamma}(X^{(p)}/\overline{S})$ • Hence an action of G_m on both categories.

- F-transform (Faltings, Xu, Shiho):
- Given Y/S, with a lifting ϕ_V of $F_{\overline{Y}}$, there is an equivalence of categories:
- MICP_{an}($Y^{(p)}/S$) \equiv MIC_{an}(Y/S): (p-connections to connections)
 - $(E', \nabla') \mapsto (E, \nabla), E := \phi_{V/S}^*(E),$ $\nabla(1 \otimes e') = p^{-1}(\mathrm{id}_{\mathrm{E}} \otimes \phi_{\mathbf{v}/\mathbf{s}}^*)(\nabla'(e))$
 - Mod $p: \operatorname{HIG}_{\operatorname{an}}(\overline{Y}^{(p)}/\overline{S}) \equiv \operatorname{MIC}_{\operatorname{an}}(\overline{Y}/\overline{S})$
 - Compatible with cohomology.

New prismatic approach

• G_m^{γ} := the divided power envelope of the identity in G_m . • $1 \to \mu_n \to G_m^{\gamma} \to G_a^{\gamma} \to 0$: exact, split in char. p. • Get: a G_m^{γ} -action on **all** of $\Omega_{X/k}^{\bullet}$ (in derived category). (Drinfeld) • $a G_m^{\gamma}$ -action on $MIC_{qn}(X/k)$. (Vologodsky) Bhatt-Lurie: ``The diffracted Hodge complex"

My goals today

- G_m^{γ} -action on:
 - Prismatic envelopes
 - Prismatic cohomology complexes
 - Categories of crystals •
- Explanation of quandaries encountered

14

Actions on envelopes

- Notation: If T is a formal scheme, \overline{T} is its reduction mod p.
- X/S smooth, Y/S smooth (p-completely)
- $F_X: X \to X$, Frobenius, $\phi_Y: Y \to Y$, lift of $\overline{F_Y}$
- $\phi_V^* : O_Y \to O_Y : \phi_V^*(f) = f^p + p\delta(f)$
- (Y, ϕ_Y) is a *p*-torsion free (formal) δ -scheme.

The setup

*\delta***-schemes**

• Def: A " δ -scheme" is a *p*-adic formal scheme Z endowed with a map $\delta: O_7 \to O_7$ such that

• $\delta(1) = 0$

- $\delta(fg) = \delta(f)g^p + f^p\delta(g) + p\delta(f)\delta(g)$
- So $\phi(f) := f^p + p\delta(f)$ defines a Frobenius lift

• $\delta(f+g) = \delta(f) + \delta(g) - p^{-1} \sum_{1}^{p-1} {p \choose i} f^i g^{p-i}$

• We have categories and functors:

• Forget: : $Sch_{\delta} \rightarrow Sch_{p}$

• Left adjoint: W: $Sch_p \rightarrow Sch_{\delta}$

• Right adjoint: J: $Sch_p \rightarrow Sch_\delta$ (Buium, Borger)

• Thus, for $T \in Sch_p$, there are universal:

• $i: T \to W(T)$

• $\pi: J(T) \to T$

• Formation of W(T) and of J(T) is compatible with étale localization.

(Joyal)

Envelopes

• $X \subseteq \overline{Y} \subseteq Y(\delta \text{-scheme})$

- $\Delta_X(Y) \to Y$ is the universal δ -map from a (*p*-torsion free) δ -scheme to Y such that $\overline{\Delta}_X(Y) \to \overline{Y}$ factors through X.
- scheme to Y such that $\overline{D}_X(Y) \to \overline{Y}$ factors through X.

h • Have $\Delta_X(Y) \xrightarrow{\cdot} D_X(Y) \rightarrow Y$.

• $D_X(Y) \to Y$ is the universal map from a p-torsion free formal

(Used by Oyama and Xu to study the Cartier transform.)

- $i_{Y/Z}$: $Y \to Z$, a closed immersion of smooth δ -schemes over S.
- Get sections: $i_{Y/S}: Y \to D_Y(Z)$
- Theorem: $i_{Y/\Lambda}: Y \to \Delta_Y(Z)$ is a PD-immersion.
 - In fact, $\Delta_Y(Z)$ is the PD-envelope of $i_{Y/S}$: $Y \to D_Y(Z)$.

Important special case

$$I), i_{Y/\Delta}: Y \to \Delta_Y(Z)$$

• $D_X(Y) \to Y$ is the "dilatation" of X in Y. • (The affine piece $D^+(p)$ of the blow-up of X in Y) • Have $\rho_D \colon I_{X/Y} \to O_D \colon \rho_D(p) = 1$.

Dilatations and Dilations

• When $X \to Y$ is a ``d-regular'' embedding, $D_X(Y)$ is also the "dilation" of X in Y: (use a theorem of C. Huneke: $S^n I_{X/Y} \cong I_{X/Y}^n$).

• Thus, $\rho_D: I_{X/Y} \to O_D$ is universal:

• For all π_T : $T \to Y$,

• $\{T \to D_X(Y)\} = \{\rho_T : \pi_T^*(I_{X/Y}) \to O_T : \rho_T(p) = 1\}.$

• Note: makes sense for quasi-ideals too.

• Theorem: $X \to Y$ a regular immersion also implies:

• $\Delta_X(Y) = J(D_X(Y))$

• Thus, if $T \in Sch_p$ and $\pi_T \colon T \to Y$ is given, we get:

• $W(T) \rightarrow Y$, morphism of δ -schemes.

• $Mor(T, \Delta_X(Y)) \cong Mor_{\delta}(W(T), \Delta_X(Y))$ $= Mor_{\delta}(W(T), J(D_{X}(Y)))$

• $\cong Mor(W(T), D_X(Y)) \cong \{\rho \colon I_{X/Y} \to O_{W(T)} \colon \rho(p) = 1\}$

Actions on dilations

- - Re: $D_X(Y)(T) = \{ \rho_T : I_{X/Y} \to \pi_{T^*}(O_T) : \rho_T(p) = 1 \}$

 - $D_X(Y)(T) \neq \emptyset$ implies $\pi_T^{\sharp}(I_{X/Y}) \subseteq pO_T$, which implies:

• Theorem: $D_X(Y)$ has an action of $N_{X/\overline{Y}}$, making it a pseudo-torsor over Y. • Clearly a pseudo-torsor under $\{s: I_{X/Y} \to \pi_{T^*}(O_T) : s(p) = 0\}$. • $\{s: I_{X/Y} \to \pi_{T^*}(O_T) : s(p) = 0\} = \{\overline{s}: I_{X/\overline{Y}}/I_{X/\overline{Y}}^2 \to O_T\} = N_{X/\overline{Y}}(T).$

- A lifting of X in Y defines a section of $D_X(Y) \to X$. (mod p^2 is enough).
- Hence an isomorphism: $\overline{D}_X(Y) \cong N_{X/\overline{Y}}$
- Hence an action of G_m on $D_X(Y)$.
- My idea: the "restriction" of this action to G_m^{γ} lifts to $\Delta_X(Y)$, using "parallel transport."
- Need: Connection on $\overline{\Delta}_X(Y)$, viewed over $\overline{D}_X(Y)$.

The quandary

- Calculated an example of envelope and cohomology complex.
- Saw that *no* compatible action was possible.
- Went ahead anyway.

The connection on $\Delta_X(Y)$

- Note: $\Omega^1_{D_X(Y)/Y} \cong \Omega^1_{\overline{D}_Y(Y)/X} \cong \pi^*(I_{X/\overline{Y}}/I_{X/\overline{Y}}^2)$
- Theorem: There is a unique (integrable, q-nilpotent) connection: $\nabla: O_{\overline{\Delta}_{V}(Y)} \to O_{\overline{\Delta}_{V}(Y)} \otimes \Omega^{1}_{D_{V}(Y)/Y}$ such that
 - $\nabla(f) = df$
 - $\nabla(fg) = f \nabla(g) + g \nabla(f)$ if $f, g \in O_{\overline{\Delta}_{V}(Y)}$
 - $\nabla(\overline{\delta}(f)) = -\overline{f}^{p-1}\nabla\overline{f}$

if $f \in h^*(O_{\overline{D}_v(Y)})$

 $if f \in O_{\Delta_{Y}(Y)}$

- The connection V produces a stratification ϵ_{Λ} , which we reinterpret as follows.
- $\overline{D}_X(Y) \times_X N_{X/\overline{Y}} \cong \overline{D}_X(Y) \times_X \overline{D}_X(Y) : (z,\eta) \mapsto (z,z\eta)$ • $\overline{D}_X(Y) \times_X N_{X/\overline{Y}}^{\gamma} \cong \overline{D}_X(Y) \times_X^{\gamma} \overline{D}_X(Y)$
- So a PD-stratification ϵ_{Δ} on $\overline{\Delta}_X(Y)$ is an $N_{Y/\overline{Y}}^{\gamma}$ -action

Action on $\Delta_X(Y)$

- Theorem: (Bhatt, or Bhatt-Lurie?) • The action of $N_{X/\overline{Y}}$ on $D_X(Y)$ lifts to
 - and $\Delta_X(Y)$ becomes a torsor for this action.
- Turns out: This coincides with my construction!

an action of $N_{X/\overline{Y}}^{\gamma}$ on $\overline{\Delta}_X(Y)$.

• Re: Given $T \to \overline{Y} \to Y$, $\{T \to \Delta_X(Y)\} \cong \{W(T) \to D_X(\overline{Y})\}$ • Torsor under • $\{\tilde{s}: I_{X/\overline{Y}}/I_{X/\overline{Y}}^2 \to O_{W(T)}\} = N_{X/\overline{Y}}(W(T)) \cong$ • $\{s_{\Gamma} \colon \Gamma^{\bullet}(I_{X/\overline{Y}}/I_{X/\overline{Y}}^2) \to O_T\}$

$$= N^{\gamma}_{X/\overline{Y}}(T)$$

• $\tilde{s}(x) = (s_{\Gamma}(x), -s_{\Gamma}(x^{[p]}), s_{\Gamma}(x^{[p^2]}), \cdots)$ (formula of Drinfeld).

The G'_m -action on $\Delta_X(Y)$

• Recall: a lifting $X \to Y$ induces an action of G_m on $\overline{D}_X(Y)$: • $r_D: \overline{D}_X(Y) \times G_m \to \overline{D}_X(Y)$ • The stratification ϵ_{Λ} of $\Delta_X(Y)$ lifts • PD-paths in $\overline{D}_X(Y)$ to PD-paths in $\overline{\Delta}_X(Y)$.

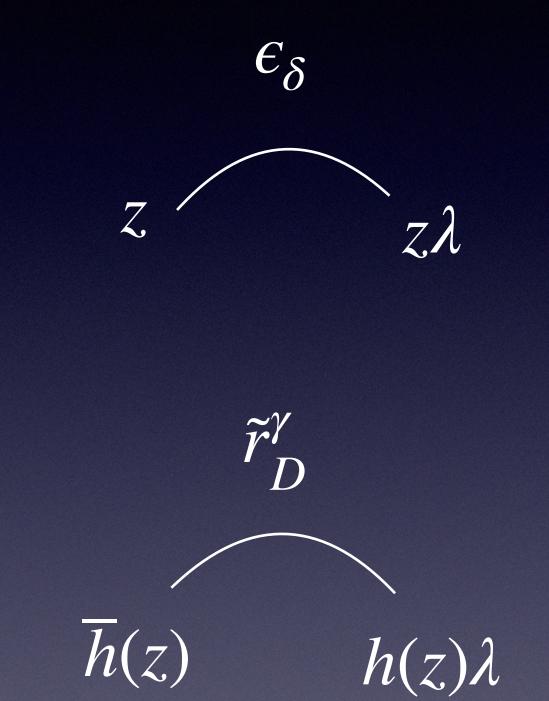
Parallel transport lifts the $G_m^{\gamma}\mbox{-action}$

 $z \in \overline{\Delta}_X(Y)$

 \overline{h}

 $\lambda \in \mathbf{G}_{\mathbf{m}}^{\gamma}$

 $\overline{D}_X(Y)$



The Sen operator

- θ_D is the Euler vector field on $N_{X/\overline{Y}}$:
- $\theta_D = \sum s_i d/ds_i$ in coordinates
- $\theta_{\Delta} = V_{\theta_D}$.

• Derivative of the action with respect to ud/du, evaluated at u = 1• Get vector fields θ_D and θ_Λ on $\overline{D}_X(Y)$ and $\overline{\Delta}_X(Y)$, respectively.

Local formulas for the action

- Suppose $\tilde{X} \subseteq Y$ is a smooth lift of X and $x \in I_{\tilde{X}/Y}$. We have:
- $\overline{\rho}_D(x) \in O_{\overline{D}_V(Y)}$
- $\overline{\rho}_{\Delta}(x) \in O_{\overline{\Delta}_{Y}(Y)}$,
- $\overline{\delta}(\rho_{\Delta}(x)) \in O_{\overline{\Delta}_{Y}(Y)}$.

Formulas:

• $r_D^*(\overline{\rho}_D(x)) = u\overline{\rho}_D(x)$ • $r^*_{\Lambda}(\overline{\delta}(\rho_{\Lambda}(x))) = \overline{\delta}(\rho_{\Lambda}(x)) + \log(u)\overline{\pi}^*_{\Lambda}(\overline{\delta}(x))$ • Thus, $\overline{\delta}(\rho_{\Delta}(x))$ is fixed iff $\overline{\pi}^*_{\Lambda}(\overline{\delta}(x)) = 0$.

• In fact, the following are equivalent:

• $\overline{\delta}(\rho_{\Lambda}(x))$ is fixed under the action

• $\delta(x) \in I_{X/Y}$

• $\rho_{\Delta}(x)^{[n]} \in O_{\Delta_{Y}(Y)}$ for all n.

• They imply: $r^*_{\Lambda}(\overline{\rho}_{\Delta}(x)^{[p]}) = \overline{\rho}_{\Delta}(x)^{[p]} + (u-1)\overline{\rho}_{\Delta}(\delta(x))$

Action on cohomology and its categorification

• $\overline{\Delta}_X(Y(1)) := \overline{\Delta}_X(Y \times_S Y)$

• $\overline{\Delta}_X(Y)(n)$ for all n

G'm acts on

 $\cong \overline{\Delta}_X(Y) \times_Y \overline{\Delta}_Y(Y(1)) \cong \overline{\Delta}_Y(Y(1)) \times_Y \overline{\Delta}_X(Y)$

Gm acts on

• The prismatic Cech-Alexander complex:

•
$$O_{\overline{\Delta}_X(Y)} \to O_{\overline{\Delta}_X(Y(1))} \to O_{\overline{\Delta}_X(Y(2))} \to O_{\overline{\Delta}_X(Y(3))} \to \cdots$$

- Hence on the prismatic cohomology of X/k. •
- Can we find a DGA with an action?

The prismatic Higgs complex

• DR complex: $d: O_Y \to \Omega^1_{Y/S} \to \Omega^2_{Y/S} \to \cdots$

- p-DR complex: multiply all differentials by p.
- d' := pd is a *p*-connection on O_V .

• Claim: d'extends uniquely to a p-connection on $O_{D_{Y}(Y)}$ and on $O_{\Delta_{Y}(Y)}$. • Thm: $(O_{\Delta_X(Y)} \otimes \Omega^{\bullet}_{Y/S}, d')$ calculates the prismatic cohomology of X/S.

Reduce mod *p* to get:
(O_{Δ_X(Y)} ⊗ Ω[•]_{Y/S}, *d*') computes prismatic cohomology of *X/k*.
Quandary: G^γ_m-action is *not* compatible with *d*'.

- Prismatic crystals on X/k. (i.e. p-torsion prismatic crystals on X/S.)
- $O_{\overline{\Delta}_{v}(Y)}$ -modules with (compatible) prismatic stratification:
 - $(E,\epsilon):\epsilon:p_{\gamma}^{*}(E)\to p_{1}^{*}(E)$
- $O_{\overline{\Delta}_{V}(Y)}$ -modules with (compatible) q-nilpotent Higgs field: • $(E,\theta): \theta: E \to E \otimes \Omega^1_{Y/S}$
- O_X -modules with q-nilpotent integrable connection. (via the F-transform)

Action on categories:

G'm acts on all these:

• e.g on the category of $O_{\overline{\Delta}_{Y}(Y)}$ -modules with prismatic stratification:

- $p_1, p_2: \overline{\Delta}_X(Y(1)) \to \overline{\Delta}_X(Y)$
- $(E, \epsilon) : \epsilon : p_{\gamma}^{*}(E) \to p_{1}^{*}(E)$
- $r_{\Lambda}(E,\epsilon) := (\tilde{E},\tilde{\epsilon})$, where:
- $(\tilde{E}, \tilde{\epsilon}) := r_{\Delta}^*(\epsilon) : p_2^* r_{\Delta}^*(E) \to p_1^* r_{\Delta}^*(E)$

- Therefore, G_m^{γ} acts on Higgs fields:
- $(E, \epsilon) \leftrightarrow (E, \theta)$
- $(\tilde{E}, \tilde{\epsilon}) \leftrightarrow (\tilde{E}, \tilde{\theta})$
- Describe: $(E, \theta) \mapsto (\tilde{E}, \tilde{\theta})$?
- on $MIC_{qn}(X/k)$

Conjecture by Vologodsky, based on his construction of the action

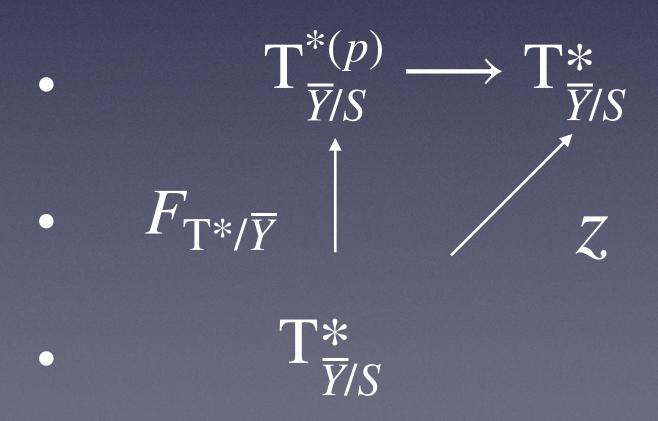
• If $\tilde{X} = Y$, $\tilde{E} = E$. What is $\tilde{\theta}$? • $(E, \theta) \leftrightarrow E_{\theta}$, sheaf on cotangent space $\hat{T}_{X/S}^*$. • ``Obvious'' action $r_{\rm T}$ of ${\rm G}_{\rm m}$, also of ${\rm G}_{\rm m}^{\gamma}$, on ${\rm \hat{T}}_{X/S}^*$. • Conjecture: $E_{\tilde{\theta}} = s_{\Lambda*}(E_{\theta})$, where • $s_{\Delta} := \alpha^{-1} \circ r_{T} \circ (\alpha \times id_{G^{\gamma}}).$

The *a*-transform

• $\zeta \colon F^*_{\overline{Y}}(\Omega^1_{\overline{Y}/S}) \to \Omega^1_{\overline{Y}/S}$ induced by $p^{-1}\phi^*$.

•
$$\hat{\zeta} \colon T_{\overline{Y}/S} \to F^*_{\overline{Y}}(T_{\overline{Y}/S})$$
 (its dual)

• Write geometrically:



$\alpha := id - z$

- $\alpha: T^*_{\overline{Y/S}} \to T^*_{\overline{Y/S}}$ is a group scheme morphism, restricts to id on the zero section • $\hat{\alpha}: \hat{T}^*_{\overline{Y}/S} \to \hat{T}^*_{\overline{Y}/S}$ is an isomorphism, • $\operatorname{HIG}_{qn}(\overline{Y}/S) \subset O_{\widehat{T}_{\overline{X}/C}}$ -modules (full subcategory) • α transform: $\operatorname{HIG}_{an}(\overline{Y}/S) \to \operatorname{HIG}_{an}(\overline{Y}/S) \quad (E,\theta) \mapsto \hat{\alpha}_*(E,\theta)$ Equivalence of categories, inverse given by \hat{lpha}^* •
- Thm: $(E \otimes \Omega^{\bullet}_{\overline{Y}/S}, \theta^{\bullet}) \sim (\hat{\alpha}_{*}(E) \otimes \Omega^{\bullet}_{\overline{Y}/S}, \theta^{\bullet})$ (in derived category)

Quandaries and resolutions

Action on crystals

- Theorem: Vologodsky's conjecture is true.
 - Proof uses the formula for the G_m^{γ} action on $\overline{\Delta}_Y(Y(1))$.
- It implies that the action on $MIC_{an}(X/S)$ rescales the *p*-curvature,
- and hence agrees with his action,
- and that of Bhatt-Lurie (presumably).

Why is d'not compatible with r_{Λ} ?

- r_{Λ} is compatible with the stratification of $\Delta_X(Y)$.
- Review: relationship between stratifications and Higgs fields.
- and between stratifications and p-connections

• $Y \rightarrow Y(1)$ is an immersion of δ -schemes.

- $p_1, p_2: \Delta_Y(1) \to Y, Y \to \Delta_Y(1)$
- $I_{Y/\Lambda}$ is a PD-ideal.
- Have $I_{Y/\Delta}/I_{Y/\Delta}^{[2]} \cong \Omega^1_{Y/S}$ (involves mult. by p)

• G_m^{γ} acts on $\overline{\Delta}_V(1)$, • Action preserves $I_{\overline{Y}/\overline{\Lambda}}$. • But not $I_{\overline{v/\Lambda}}^{[n]}$ for n > 1 and not even $I_{\overline{v/\Lambda}}^{[2]}$. • Hence not on $I_{\overline{Y}/\overline{\Delta}}I_{\overline{Y}/\overline{\Lambda}}^{[2]} \cong \Omega^{1}_{\overline{Y}/S}$.

• Recall formula: $r^*_{\Lambda}(\overline{\rho}_{\Delta}(x)^{[p]}) = \overline{\rho}_{\Delta}(x)^{[p]}) + (u-1)\overline{\rho}_{\Delta}(\delta(x)).$

• Re: the $N_{X/\overline{Y}}^{\gamma}$ - action on $\Delta_X(Y)$ gives us a connection:

•
$$\nabla : O_{\overline{\Delta}_X(Y)} \to O_{\overline{\Delta}_X(Y)}$$

Compose with

Remedy

 $O_{\overline{\Delta}_{X}(Y)} \otimes \Omega^{1}_{\overline{D}/X} \cong O_{\overline{\Delta}_{X}(Y)} \otimes I_{X/\overline{Y}}/I^{2}_{X/\overline{Y}} \to O_{\overline{\Delta}_{X}(Y)} \otimes i^{*}_{X}(\Omega^{1}_{\overline{Y}/S})$ • Get a new Higgs field: $d_{\delta} \colon O_{\overline{\Delta}_{Y}(Y)} \to O_{\overline{\Delta}_{Y}(Y)} \otimes \Omega^{1}_{\overline{Y}/S}$

• Theorem: d_{δ} is the lpha-transform of $\overline{d'}$.

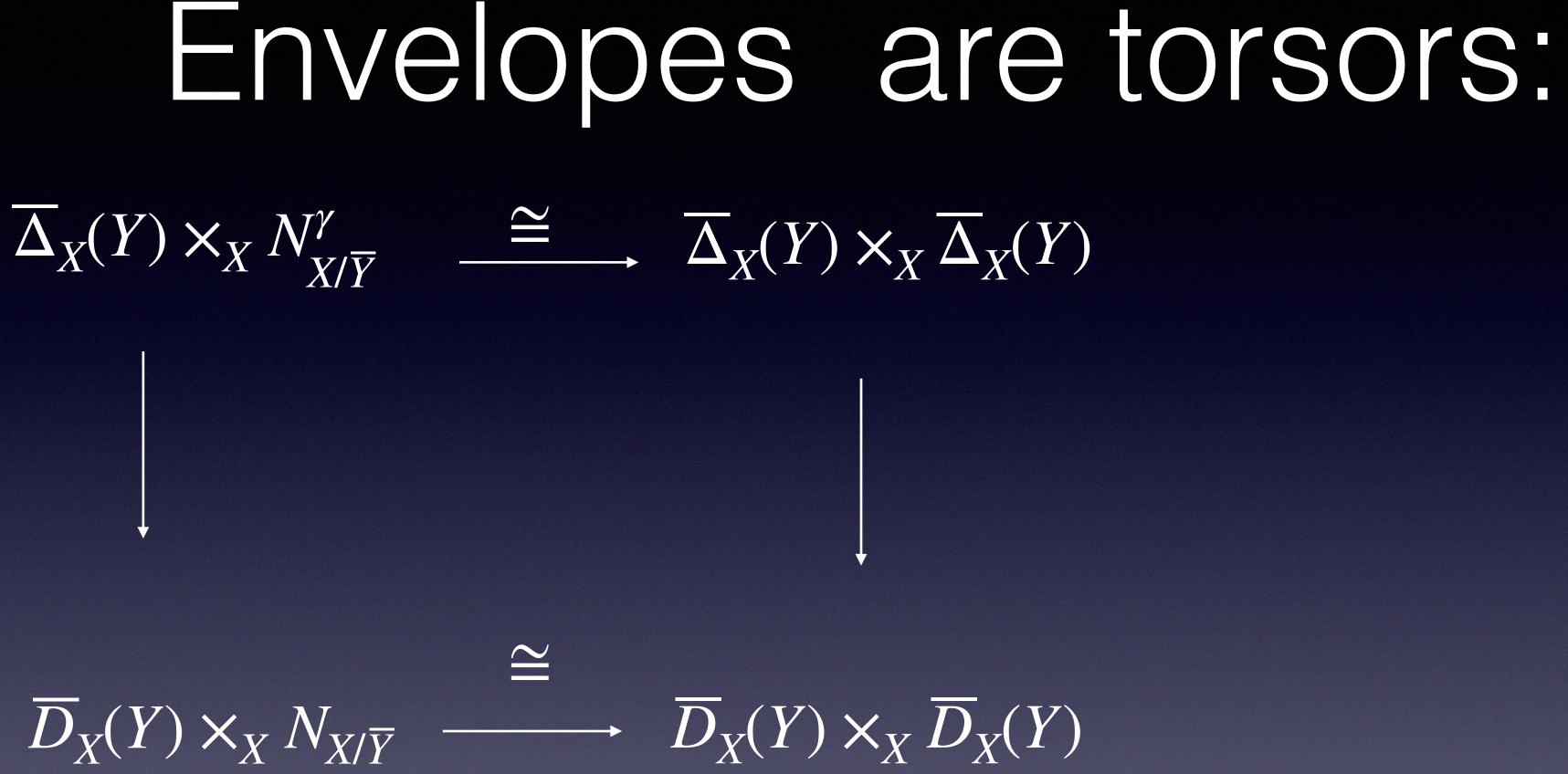
• Corollary: $(O_{\overline{\Delta}_X(Y)} \otimes \Omega^{\bullet}_{\overline{Y}/X}, d_{\delta})$ also calculates the prismatic cohomology of X/k. (Already known to Bhatt).

• d_{δ} is compatible with the Sen operator, since $\theta_{\Delta} = \nabla_{\theta_{D}}$.

• Integrability of V implies that the following diagram commutes:

55

Summary



A lifting of X in Y produces:

- A section of D
 _X(Y) → X
 An isomorphism D
 X(Y) ≅ N{X/Ȳ}
 An action r_D of G_m on D
 _X(Y).
- An action r_{Δ} of G_m^{γ} on $\overline{\Delta}_X(Y)$.

Resolution of the quandary

- There are *two* natural Higgs fields on $\overline{\Delta}_X(Y)$, both of which calculate the prismatic cohomology of X/S,
 - related by the α -transform.
 - lifting of $X \to Y$.
 - May be amenable to calculation.

• One of which is compatible with the G_m^{γ} -action induced by a

Thanks again, Bhargav!

