Diffracting prisms: resolution of a quandary

May 16, 2023

Evanston

Outline

- Theme and variations
- Actions on envelopes
- Actions on cohomology and on categories of crystals
- Quandaries and their resolutions

Thanks

- Organizers
- For inviting me to speak here, and in particular:
- For giving me a chance to thank everyone.

Luc Illusie

- First to tell me about new developments, constant companion.
- On hearing my idea about diffracting prisms:
- "Your idea will never work."
- "I do not have the motivation to study your approach."
- "In your next lecture, be sure to explain that I do not approve."
- His opinion was justified, as you will see.

Vadim Vologodsky

- Consultation and inspiration, past and present:
- Joint work on the Cartier transform
- Categorification of Drinfeld's idea
- Patient explanations of his work and of that of Drinfeld and Bhatt-Lurie.
- On hearing my idea about diffracting prisms:
- "It would be great if your idea works."
- "I agree. Here is a general conjecture."

Bhargav Bhatt

- Inspiration for all my work over the last five years:
- New construction of the DR-Witt complex
- Prisms
- 2019 : "You will like this:" Prismatic cohomology and Higgs fields
- On hearing my idea about diffracting prisms:
- 2023 "To reconcile our different approaches, come to Princeton."
- "I am writing to share....another construction of the Sen operator....motivated by Arthur's idea of using a flat connection..., but wanted to do it intrinsically....

Theme and Variations

Hodge theory as G_{m} actions

Classical Case:

- X/C smooth, projective
- Hodge: $R \Gamma\left(\Omega_{X / C}^{0}, d\right) \sim R \Gamma\left(\oplus \Omega_{X / C}^{a}[-a]\right)$
- $u \in \mathrm{G}_{\mathrm{m}}$ acts on $R \Gamma\left(\Omega_{X}^{a}\right)$: multiplication by u^{a}.
- Simpson:
- $\operatorname{MIC}_{\mathrm{ss}}(X / \mathrm{C}) \equiv \mathrm{HIG}_{\mathrm{ss}}(X / \mathrm{C})$
- Hence: G_{m}-action on these categories.

Recall:

- $\nabla: E \rightarrow \Omega_{Y / S}^{1} \otimes E$ is
- a connection if $\nabla(f e)=d f \otimes e+f \nabla(e)$
- a λ-connection if $\nabla(f e)=\lambda d f \otimes e+f \nabla(e)$
- a Higgs field if $\nabla(f e)=f \nabla(e)\left(\right.$ and $\left.\nabla^{2}=0\right)$
- equivalent: $S^{\circ} T_{Y / S}$ - module structure on E.

Early p-adic and char. p results

- X / k smooth, k perfect of char. $p, S:=\operatorname{Spf}(W), \bar{S}:=\operatorname{Spec}(k)$
- $F_{X / \bar{s}}: X \rightarrow X^{(p)}$ the relative Frobenius morphism.
- Deligne-Illusie:

A lifting of X to W_{2} induces an isomorphism:

- $F_{X / S^{*}}\left(\tau_{<p} \Omega_{X / k}\right) \sim \oplus_{a<p} \Omega_{X(p) / k}^{a}[-a]$ (in $\left.\mathrm{D}_{\text {coh }}\left(O_{X(\rho)}\right)\right)$.
- Better: $\quad \sim \oplus_{a<p} \mathscr{P}^{a}\left(\Omega_{X / S}^{\circ}\right)[-a]$
- $\Omega_{X / k} \sim \oplus_{a} \Omega_{X(\varphi) / k}^{a}[-a]$ (in $\mathrm{D}_{\text {coh }}\left(O_{X(p)}\right)$). (Given also a lifting of $F_{X / \bar{S}}$.)
- Cartier transform (O. - Vologodsky):
- $\operatorname{MIC}_{\mathrm{qn}}^{<\mathrm{p}}(X / \bar{S}) \equiv \mathrm{HIG}_{\mathrm{qn}}^{<\mathrm{p}}\left(X^{(p)} / \bar{S}\right)$, or, better:
- $\operatorname{MIC}_{\mathrm{qn}}^{\gamma}(X / \bar{S}) \equiv \operatorname{HIG}_{\mathrm{qn}}^{\gamma}\left(X^{(p)} / \bar{S}\right)$
- Hence an action of G_{m} on both categories.
- F-transform (Faltings, Xu, Shiho):
- Given Y / S, with a lifting ϕ_{Y} of $F_{\bar{Y},}$ there is an equivalence of categories:
- $\operatorname{MICP}_{q n}\left(Y^{(p)} / S\right) \equiv \operatorname{MIC}_{q n}(Y / S):(p$-connections to connections)
- $\left(E^{\prime}, \nabla^{\prime}\right) \mapsto(E, \nabla), E:=\phi_{Y / S}^{*}(E)$, $\nabla\left(1 \otimes e^{\prime}\right)=p^{-1}\left(\mathrm{id}_{\mathrm{E}} \otimes \phi_{\mathrm{Y} / \mathrm{S}}^{*}\right)\left(\nabla^{\prime}(\mathrm{e})\right)$
- Mod $p: \operatorname{HIG}_{\mathrm{qn}}\left(\bar{Y}^{(p)} / \bar{S}\right) \equiv \operatorname{MIC}_{\mathrm{qn}}(\bar{Y} / \bar{S})$
- Compatible with cohomology.

New prismatic approach

- $\mathrm{G}_{\mathrm{m}}^{\gamma}:=$ the divided power envelope of the identity in G_{m}.
- $1 \rightarrow \mu_{p} \rightarrow \mathrm{G}_{\mathrm{m}}^{\gamma} \rightarrow \mathrm{G}_{\mathrm{a}}^{\gamma} \rightarrow 0$: exact, split in char. p.
- Get: a $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action on all of $\Omega_{X / k}^{-}$(in derived category). (Drinfeld) a $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action on $\mathrm{MIC}_{q n}(X / k)$. (Vologodsky)
- Bhatt-Lurie: "The diffracted Hodge complex"

My goals today

- $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action on:
- Prismatic envelopes
- Prismatic cohomology complexes
- Categories of crystals
- Explanation of quandaries encountered

Actions on envelopes

The setup

- Notation: If T is a formal scheme, \bar{T} is its reduction $\bmod p$.
- X / \bar{S} smooth, Y / S smooth (p-completely)
- $F_{X}: X \rightarrow X$, Frobenius, $\phi_{Y}: Y \rightarrow Y$, lift of $F_{\bar{Y}}$
- $\phi_{Y}^{*}: O_{Y} \rightarrow O_{Y}: \phi_{Y}^{*}(f)=f^{p}+p \delta(f)$
- $\left(Y, \phi_{Y}\right)$ is a p-torsion free (formal) δ-scheme.

δ-schemes

- Def: A " δ-scheme" is a p-adic formal scheme Z endowed with a map $\delta: O_{Z} \rightarrow O_{Z}$ such that
- $\delta(1)=0$
. $\delta(f+g)=\delta(f)+\delta(g)-p^{-1} \sum_{1}^{p-1}\binom{p}{i} f^{i} g^{p-i}$
- $\delta(f g)=\delta(f) g^{p}+f^{p} \delta(g)+p \delta(f) \delta(g)$
- So $\phi(f):=f^{p}+p \delta(f)$ defines a Frobenius lift
- We have categories and functors:
- Forget: : $\operatorname{Sch}_{\delta} \rightarrow \operatorname{Sch}_{p}$
- Left adjoint: W : Sch $h_{p} \operatorname{Sch}_{\delta} \quad$ (Joyal)
- Right adjoint: J: Sch $h_{p} \operatorname{Sch}_{\delta} \quad$ (Buium, Borger)
- Thus, for $T \in S c h_{p}$, there are universal:
- $i: T \rightarrow \mathrm{~W}(T)$
- $\pi: \mathrm{J}(T) \rightarrow T$
- Formation of $\mathrm{W}(T)$ and of $\mathrm{J}(T)$ is compatible with étale localization.

Envelopes

- $X \subseteq \bar{Y} \subseteq Y(\delta$-scheme $)$
- $\Delta_{X}(Y) \rightarrow Y$ is the universal δ-map from a (p-torsion free) δ-scheme to Y such that $\bar{\Delta}_{X}(Y) \rightarrow \bar{Y}$ factors through X.
- $D_{X}(Y) \rightarrow Y$ is the universal map from a p-torsion free formal scheme to Y such that $\bar{D}_{X}(Y) \rightarrow \bar{Y}$ factors through X.
- (Used by Oyama and Xu to study the Cartier transform.)
- Have $\Delta_{X}(Y) \xrightarrow{h} D_{X}(Y) \rightarrow Y$.

Important special case

- $i_{Y / Z}: Y \rightarrow Z$, a closed immersion of smooth δ-schemes over S.
- Get sections: $i_{Y / S}: Y \rightarrow D_{Y}(Z), i_{Y / \Delta}: Y \rightarrow \Delta_{Y}(Z)$
- Theorem: $i_{Y / \Delta}: Y \rightarrow \Delta_{Y}(Z)$ is a PD-immersion.
- In fact, $\Delta_{Y}(Z)$ is the PD-envelope of $i_{Y / S}: Y \rightarrow D_{Y}(Z)$.

Dilatations and Dilations

- $D_{X}(Y) \rightarrow Y$ is the "dilatation" of X in Y.
- (The affine piece $D^{+}(p)$ of the blow-up of X in Y)
- Have $\rho_{D}: I_{X / Y} \rightarrow O_{D}: \rho_{D}(p)=1$.
- When $X \rightarrow Y$ is a "d-regular" embedding, $D_{X}(Y)$ is also the "dilation" of X in Y : (use a theorem of C. Huneke: $S^{n} I_{X / Y} \cong I_{X / Y}^{n}$).
- Thus, $\rho_{D}: I_{X / Y} \rightarrow O_{D}$ is universal:
- For all $\pi_{T}: T \rightarrow Y$,
- $\left\{T \rightarrow D_{X}(Y)\right\}=\left\{\rho_{T}: \pi_{T}^{*}\left(I_{X / Y}\right) \rightarrow O_{T}: \rho_{T}(p)=1\right\}$.
- Note: makes sense for quasi-ideals too.
- Theorem: $X \rightarrow Y$ a regular immersion also implies:
- $\Delta_{X}(Y)=\mathrm{J}\left(D_{X}(Y)\right)$
- Thus, if $T \in \operatorname{Sch}_{p}$ and $\pi_{T}: T \rightarrow Y$ is given, we get:
- $\mathrm{W}(T) \rightarrow Y$, morphism of δ-schemes.
- $\operatorname{Mor}\left(T, \Delta_{X}(Y)\right) \cong M o r_{\delta}\left(\mathrm{W}(T), \Delta_{X}(Y)\right)$
$=M \operatorname{rr}_{\delta}\left(\mathrm{W}(T), \mathrm{J}\left(D_{X}(Y)\right)\right.$
- $\cong \operatorname{Mor}\left(\mathrm{W}(T), D_{X}(Y)\right) \cong\left\{\rho: I_{X / Y} \rightarrow O_{\mathrm{W}(T)}: \rho(p)=1\right\}$

Actions on dilations

- Theorem: $D_{X}(Y)$ has an action of $N_{X / \bar{Y}}$, making it a pseudo-torsor over Y.
- Re: $D_{X}(Y)(T)=\left\{\rho_{T}: I_{X / Y} \rightarrow \pi_{T^{*}}\left(O_{T}\right): \rho_{T}(p)=1\right\}$
- Clearly a pseudo-torsor under $\left\{s: I_{X / Y} \rightarrow \pi_{T^{*}}\left(O_{T}\right): s(p)=0\right\}$.
- $D_{X}(Y)(T) \neq \varnothing$ implies $\pi_{T}^{\sharp}\left(I_{X / Y}\right) \subseteq p O_{T}$, which implies:
- $\left\{s: I_{X / Y} \rightarrow \pi_{T^{*}}\left(O_{T}\right): s(p)=0\right\}=\left\{\bar{s}: I_{X / \bar{Y}} / I_{X / \bar{Y}}^{2} \rightarrow O_{T}\right\}=N_{X / \bar{Y}}(T)$.
- A lifting of X in Y defines a section of $\bar{D}_{X}(Y) \rightarrow X$. $\left(\bmod p^{2}\right.$ is enough).
- Hence an isomorphism: $\bar{D}_{X}(Y) \cong N_{X / \bar{Y}}$
- Hence an action of G_{m} on $\overline{\mathrm{D}}_{X}(Y)$.
- My idea: the "restriction" of this action to $\mathrm{G}_{\mathrm{m}}^{\gamma}$ lifts to $\bar{\Delta}_{X}(Y)$, using "parallel transport."
- Need: Connection on $\bar{\Delta}_{X}(Y)$, viewed over $\bar{D}_{X}(Y)$.

The quandary

- Calculated an example of envelope and cohomology complex.
- Saw that no compatible action was possible.
- Went ahead anyway.

The connection on $\bar{\Delta}_{X}(Y)$

- Note: $\Omega_{D_{X}(Y) / Y}^{1} \cong \Omega_{D_{X}(Y) / X}^{1} \cong \pi^{*}\left(I_{X / \bar{Y}} / I_{X / \bar{Y}}^{2}\right)$
- Theorem: There is a unique (integrable, q-nilpotent) connection: $\nabla: O_{\bar{\Delta}_{X}(Y)} \rightarrow O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{D_{X}(Y) / Y}^{1}$ such that
- $\nabla(f)=d f \quad$ if $f \in h^{*}\left(O_{\bar{D}_{X}(Y)}\right)$
- $\nabla(f g)=f \nabla(g)+g \nabla(f)$ if $f, g \in O_{\bar{\Delta}_{X}(Y)}$
- $\nabla(\bar{\delta}(f))=-\bar{f}^{p-1} \nabla \bar{f} \quad$ if $f \in O_{\Delta_{X}(Y)}$
- The connection ∇ produces a stratification ϵ_{Δ}, which we reinterpret as follows.
- $\bar{D}_{X}(Y) \times_{X} N_{X / \bar{Y}} \cong \bar{D}_{X}(Y) \times_{X} \bar{D}_{X}(Y):(z, \eta) \mapsto(z, z \eta)$
- $\bar{D}_{X}(Y) \times_{X} N_{X / \bar{Y}}^{\gamma} \cong \bar{D}_{X}(Y) \times_{X}^{\gamma} \bar{D}_{X}(Y)$
- So a PD-stratification ϵ_{Δ} on $\bar{\Delta}_{X}(Y)$ is an $N_{X / \bar{Y}}^{\gamma}$-action

Action on $\Delta_{X}(Y)$

- Theorem: (Bhatt, or Bhatt-Lurie?)
- The action of $N_{X / \bar{Y}}$ on $\bar{D}_{X}(Y)$ lifts to

$$
\text { an action of } N_{X / \bar{Y}}^{\gamma} \text { on } \bar{\Delta}_{X}(Y) \text {. }
$$

- and $\bar{\Delta}_{X}(Y)$ becomes a torsor for this action.
- Turns out: This coincides with my construction!
- Re: Given $T \rightarrow \bar{Y} \rightarrow Y,\left\{T \rightarrow \Delta_{X}(Y)\right\} \cong\left\{\mathrm{W}(T) \rightarrow D_{X}(Y)\right\}$
- Torsor under
- $\left\{\tilde{S}: I_{X / \bar{Y}} / I_{X / \bar{Y}}^{2} \rightarrow O_{\mathrm{W}(T)}\right\}=N_{X / \bar{Y}}(\mathrm{~W}(T)) \cong$
- $\left\{s_{\Gamma}: \Gamma^{\bullet}\left(I_{X / \bar{Y}} / I_{X / \bar{Y}}^{2}\right) \rightarrow O_{T}\right\}=N_{X / \bar{Y}}^{\gamma}(T)$
- $\tilde{s}(x)=\left(s_{\Gamma}(x),-s_{\Gamma}\left(x^{[p]}\right), s_{\Gamma}\left(x^{\left[p^{2}\right]}\right), \cdots\right)$ (formula of Drinfeld).

The $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action on $\bar{\Delta}_{X}(Y)$

- Recall: a lifting $\tilde{X} \rightarrow Y$ induces an action of G_{m} on $\bar{D}_{X}(Y)$:
- $r_{D}: \bar{D}_{X}(Y) \times \mathrm{G}_{\mathrm{m}} \rightarrow \bar{D}_{X}(Y)$
- The stratification ϵ_{Δ} of $\bar{\Delta}_{X}(Y)$ lifts
- PD-paths in $\bar{D}_{X}(Y)$ to PD-paths in $\bar{\Delta}_{X}(Y)$.

Parallel transport lifts the $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action

$$
\lambda \in \mathrm{G}_{\mathrm{m}}^{\gamma} \quad \begin{array}{cc}
z \in \bar{\Delta}_{X}(Y) & z, \\
\bar{h} \mid & \overbrace{\bar{h}}(z) \\
h(z) \lambda \\
D_{X}(Y)
\end{array}
$$

The Sen operator

- Derivative of the action with respect to $u d / d u$, evaluated at $u=1$
- Get vector fields θ_{D} and θ_{Δ} on $\bar{D}_{X}(Y)$ and $\bar{\Delta}_{X}(Y)$, respectively.
- θ_{D} is the Euler vector field on $N_{X / \bar{Y}}$:
- $\theta_{D}=\sum s_{i} d / d s_{i}$ in coordinates
- $\theta_{\Delta}=\nabla_{\theta_{D}}$.

Local formulas for the action

- Suppose $\tilde{X} \subseteq Y$ is a smooth lift of X and $x \in I_{\tilde{X} / Y}$. We have:
- $\bar{\rho}_{D}(x) \in O_{\bar{D}_{X}(Y)}$,
- $\bar{\rho}_{\Delta}(x) \in O_{\bar{\Delta}_{X}(Y)}$,
- $\bar{\delta}\left(\rho_{\Delta}(x)\right) \in O_{\bar{\Delta}_{X}(Y)}$.

Formulas:

- $r_{D}^{*}\left(\bar{\rho}_{D}(x)\right)=u \bar{\rho}_{D}(x)$
- $r_{\Delta}^{*}\left(\bar{\delta}\left(\rho_{\Delta}(x)\right)\right)=\bar{\delta}\left(\rho_{\Delta}(x)\right)+\log (u) \bar{\pi}_{\Delta}^{*}(\bar{\delta}(x))$
- Thus, $\bar{\delta}\left(\rho_{\Delta}(x)\right)$ is fixed iff $\bar{\pi}_{\Delta}^{*}(\bar{\delta}(x))=0$.
- In fact, the following are equivalent:
- $\bar{\delta}\left(\rho_{\Delta}(x)\right)$ is fixed under the action
- $\delta(x) \in I_{X / Y}$
- $\rho_{\Delta}(x)^{[n]} \in O_{\Delta_{X}(Y)}$ for all n.
- They imply: $r_{\Delta}^{*}\left(\bar{\rho}_{\Delta}(x)^{[p]}\right)=\bar{\rho}_{\Delta}(x)^{[p]}+(u-1) \bar{\rho}_{\Delta}(\delta(x))$

Action on cohomology and its categorification

$\mathrm{G}_{\mathrm{m}}^{\gamma}$ acts on

- $\bar{\Delta}_{X}(Y)$
- $\bar{\Delta}_{X}(Y(1)):=\bar{\Delta}_{X}\left(Y \times_{S} Y\right)$

$$
\cong \bar{\Delta}_{X}(Y) \times_{Y} \bar{\Delta}_{Y}(Y(1)) \cong \bar{\Delta}_{Y}(Y(1)) \times_{Y} \bar{\Delta}_{X}(Y)
$$

- $\bar{\Delta}_{X}(Y)(n)$ for all n

$\mathrm{G}_{\mathrm{m}}^{\gamma}$ acts on

- The prismatic Cech-Alexander complex:
- $O_{\bar{\Delta}_{X}(Y)} \rightarrow O_{\bar{\Delta}_{X}(Y(1))} \rightarrow O_{\bar{\Delta}_{X}(Y(2))} \rightarrow O_{\bar{\Delta}_{X}(Y(3))} \rightarrow \cdots$
- Hence on the prismatic cohomology of X / k.
- Can we find a DGA with an action?

The prismatic Higgs complex

- DR complex: $d: O_{Y} \rightarrow \Omega_{Y / S}^{1} \rightarrow \Omega_{Y / S}^{2} \rightarrow \cdots$
- p-DR complex: multiply all differentials by p.
- $d^{\prime}:=p d$ is a p-connection on O_{Y}.
- Claim: d^{\prime} extends uniquely to a p-connection on $O_{D_{X}(Y)}$ and on $O_{\Delta_{X}(Y)}$.
- Thm: $\left(O_{\Delta_{X}(Y)} \otimes \Omega_{Y / S}, d^{\prime}\right)$ calculates the prismatic cohomology of X / S.
- Reduce $\bmod p$ to get:
- $\left(O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{Y / S}^{\circ}, \overline{d^{\prime}}\right)$ computes prismatic cohomology of X / k.
- Quandary: $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action is not compatible with $\overline{d^{\prime}}$.

Action on categories:

- Prismatic crystals on X / k. (i.e. p-torsion prismatic crystals on X / S.)
- $O_{\bar{\Delta}_{X}(Y)}$-modules with (compatible) prismatic stratification:
- $(E, \epsilon): \epsilon: p_{2}^{*}(E) \rightarrow p_{1}^{*}(E)$
- $O_{\bar{\Delta}_{X}(Y)}$-modules with (compatible) q-nilpotent Higgs field:
- $(E, \theta): \theta: E \rightarrow E \otimes \Omega_{Y / S}^{1}$
- $O_{X^{-}}$-modules with q-nilpotent integrable connection . (via the F-transform)

$\mathrm{G}_{\mathrm{m}}^{\gamma}$ acts on all these:

- e.g on the category of $O_{\bar{\Delta}_{X}(Y)}$-modules with prismatic stratification:
- $p_{1}, p_{2}: \bar{\Delta}_{X}(Y(1)) \rightarrow \bar{\Delta}_{X}(Y)$
- $(E, \epsilon): \epsilon: p_{2}^{*}(E) \rightarrow p_{1}^{*}(E)$
- $r_{\Delta}(E, \epsilon):=(\tilde{E}, \tilde{c})$, where:
- $(\tilde{E}, \tilde{c}):=r_{\Delta}^{*}(\epsilon): p_{2}^{*} r_{\Delta}^{*}(E) \rightarrow p_{1}^{*} r_{\Delta}^{*}(E)$
- Therefore, $\mathrm{G}_{\mathrm{m}}^{\gamma}$ acts on Higgs fields:
- $(E, \epsilon) \leftrightarrow(E, \theta)$
- $(\tilde{E}, \tilde{c}) \leftrightarrow(\tilde{E}, \tilde{\theta})$
- Describe: $(E, \theta) \mapsto(\tilde{E}, \tilde{\theta})$?
- Conjecture by Vologodsky, based on his construction of the action on $\mathrm{MIC}_{q n}(X / k)$
- If $\tilde{X}=Y, \tilde{E}=E$. What is $\tilde{\theta}$?
- $(E, \theta) \leftrightarrow E_{\theta}$, sheaf on cotangent space $\hat{\mathrm{T}}_{X / S}^{*}$
- "Obvious" action r_{T} of G_{m}, also of $\mathrm{G}_{\mathrm{m}}^{\gamma}$, on $\hat{\mathrm{T}}_{X / S}^{*}$.
- Conjecture: $E_{\tilde{\theta}}=s_{\Delta *}\left(E_{\theta}\right)$, where
- $s_{\Delta}:=\alpha^{-1} \circ r_{\mathrm{T}} \circ\left(\alpha \times \mathrm{id}_{\mathrm{G}_{\mathrm{m}}^{\gamma}}\right)$.

The α-transform

- $\zeta: F_{\bar{Y}}^{*}\left(\Omega_{\bar{Y} / S}^{1}\right) \rightarrow \Omega_{\bar{Y} / S}^{1}$ induced by $p^{-1} \phi^{*}$
- $\hat{\zeta}: T_{\bar{Y} / S} \rightarrow F_{\bar{Y}}^{*}\left(T_{\bar{Y} / S}\right)$ (its dual)
- Write geometrically:

- $\alpha: T_{\bar{Y} / S}^{*} \rightarrow T_{\bar{Y} / S}^{*}$ is a group scheme morphism, restricts to id on the zero section
- $\hat{\alpha}: \hat{T}_{Y / S}^{* / *} \rightarrow \hat{T}_{\hat{Y} / S}^{*}$ is an isomorphism,
- $\operatorname{HIG}_{q n}(\bar{Y} / S) \subset O_{\hat{T}_{Y / S}^{*}}$-modules (full subcategory)
- α transform: $\mathrm{HIG}_{q n}(\bar{Y} / S) \rightarrow \mathrm{HIG}_{q n}(\bar{Y} / S) \quad(E, \theta) \mapsto \hat{\alpha}_{*}(E, \theta)$
- Equivalence of categories , inverse given by $\hat{\alpha}^{*}$
- Thm: $\left(E \otimes \Omega_{\bar{Y} / S}, \theta^{\circ}\right) \sim\left(\hat{\alpha}_{*}(E) \otimes \Omega_{\bar{Y} / S}^{\circ}, \theta^{\circ}\right)$ (in derived category)

Quandaries and resolutions

Action on crystals

- Theorem: Vologodsky's conjecture is true.
- Proof uses the formula for the $\mathrm{G}_{\mathrm{m}}^{\gamma}$ - action on $\bar{\Delta}_{Y}(Y(1))$.
- It implies that the action on $\mathrm{MIC}_{\mathrm{qn}}(X / S)$ rescales the p-curvature,
- and hence agrees with his action,
- and that of Bhatt-Lurie (presumably).

Why is $\overline{d^{\prime}}$ not compatible with r_{Δ} ?

- r_{Δ} is compatible with the stratification of $\bar{\Delta}_{X}(Y)$.
- Review: relationship between stratifications and Higgs fields.
- and between stratifications and p-connections
- $Y \rightarrow Y(1)$ is an immersion of δ-schemes.
- $p_{1}, p_{2}: \Delta_{Y}(1) \rightarrow Y, \quad Y \rightarrow \Delta_{Y}(1)$
- $I_{Y / \Delta}$ is a PD-ideal.
- Have $I_{Y / \Delta} / I_{Y / \Delta}^{[2]} \cong \Omega_{Y / S}^{1}$ (involves mult. by p)
- $\mathrm{G}_{\mathrm{m}}^{\gamma}$ acts on $\bar{\Delta}_{Y}(1)$,
- Action preserves $I_{\bar{Y} / \bar{\Delta}}$.
- But not $I_{\bar{Y} / \bar{\Delta}}^{[n]}$ for $n>1$ and not even $I_{\bar{Y} / \bar{\Delta}}^{[2]}$.
- Recall formula: $\left.r_{\Delta}^{*}\left(\bar{\rho}_{\Delta}(x)^{[p]}\right)=\bar{\rho}_{\Delta}(x)^{[p]}\right)+(u-1) \bar{\rho}_{\Delta}(\delta(x))$.
- Hence not on $I_{\bar{Y} / \Delta} I_{\bar{Y} / \Delta}^{[2]} \cong \Omega_{\bar{Y} / S}^{1}$.

Remedy

- Re: the $N_{X / \bar{Y}}^{\gamma}$-action on $\bar{\Delta}_{X}(Y)$ gives us a connection:
- $\nabla: O_{\bar{\Delta}_{X}(Y)} \rightarrow O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{\bar{D} / X}^{1}$
- Compose with

$$
O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{\bar{D} / X}^{1} \cong O_{\bar{\Delta}_{X}(Y)} \otimes I_{X / \bar{Y}} / I_{X / \bar{Y}}^{2} \rightarrow O_{\bar{\Delta}_{X}(Y)} \otimes i_{\tilde{X}}^{*}\left(\Omega_{\bar{Y} / S}^{1}\right)
$$

- Get a new Higgs field: $d_{\delta}: O_{\bar{\Delta}_{X}(Y)} \rightarrow O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{\bar{Y} / S}^{1}$
- Theorem: d_{δ} is the α-transform of $\overline{d^{\prime}}$.
- Corollary: $\left(O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{\bar{Y} / X}^{\circ}, d_{\delta}\right)$ also calculates the prismatic cohomology of X / k. (Already known to Bhatt).
- d_{δ} is compatible with the Sen operator, since $\theta_{\Delta}=\nabla_{\theta_{D}}$.
- Integrability of ∇ implies that the following diagram commutes:
- $O_{\bar{\Delta}_{X}(Y)} \xrightarrow{d_{\delta}} O_{\bar{\Delta}_{X}(Y)} \otimes \Omega_{Y / S}^{1}$
θ_{Δ}
$O_{\bar{\Delta}_{X}(Y)} \xrightarrow{d_{\delta}} O_{{\overline{\Delta_{X}}}^{(Y)}} \otimes \Omega_{Y / S}^{1}$

Summary

Envelopes are torsors:

$$
\begin{aligned}
\bar{\Delta}_{X}(Y) \times_{X} N_{X / Y}^{Y} & \cong \bar{\Delta}_{X}(Y) \times_{X} \bar{\Delta}_{X}(Y) \\
\bar{D}_{X}(Y) \times_{X} N_{X / \bar{Y}} & \cong \\
& \cong \bar{D}_{X}(Y) \times_{X} \bar{D}_{X}(Y)
\end{aligned}
$$

A lifting of X in Y produces:

- A section of $\bar{D}_{X}(Y) \rightarrow X$
- An isomorphism $\bar{D}_{X}(Y) \cong N_{X / \bar{Y}}$
- An action r_{D} of G_{m} on $\bar{D}_{X}(Y)$.
- An action r_{Δ} of $\mathrm{G}_{\mathrm{m}}^{\gamma}$ on $\bar{\Delta}_{X}(Y)$.

Resolution of the quandary

- There are two natural Higgs fields on $\bar{\Delta}_{X}(Y)$, both of which calculate the prismatic cohomology of X / \bar{S},
- related by the α-transform.
- One of which is compatible with the $\mathrm{G}_{\mathrm{m}}^{\gamma}$-action induced by a lifting of $X \rightarrow Y$.
- May be amenable to calculation.

Thanks again, Bhargav!

