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1 Background 2/23

Hidden

Structure of Derived Categories

What is fascinating about the bounded derived category of
coherent sheaves Db(X) on a smooth projective variety X?

Hidden structure

1. Unexpected equivalences Db(X)∼= Db(X ′),
2. Unexpected symmetries, i.e., group actions on Db(X),
3. Unexpected decompositions of Db(X) into simpler pieces.
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1 Background 3/23

Example 1: D-equivalence conjecture

Conjecture
Db(X)∼= Db(X ′) for birationally equivalent projective Calabi-Yau
manifolds.

Known in two situations:
1. When dim(X) = 3 (Bridgeland ‘00)
2. When X is birational to a moduli space of sheaves on a K3

surface (H-L ‘20)

Ingredients
MMP to reduce the problem to a single flop, good control over
singularities, modular interpretation, ...
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1 Background 4/23

Example 2: Full exceptional collections

Theorem (Beilinson)
Db(Pn) admits a full exceptional collection O,O(1), . . . ,O(n).

Consequences:
1. Decomposition for topological invariants of Pn,
2. Reduce homological algebra of sheaves to that of modules

over A = End(O⊕·· ·⊕O(n)).
(Generalization: semiorthogonal decompositions of Db(X))

Question
How common is this phenomenon?
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1 Background 5/23

Finding full exceptional collections

Conjecture (Dubrovin)
A smooth Fano variety has a full exceptional collection if and
only if its big quantum cohomology is generically semisimple.

The search is complicated by:

Existence of phantoms
Exceptional collections in Db(X) that span K0(X) but do NOT
generate Db(X):
• Barlow surfaces (GGvBKS,’12).
• P2 blown up at 10 general points (Krah, ‘23).
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1 Background 6/23

Plan for talk

Goal
Provide a mechanism for many conjectures about Db(X) that is
more direct than appealing to homological mirror symmetry.

Key points:

1. Semiorthogonal decompositions (SOD’s) of Db(X) arise from
certain paths in Stab(X), the space of Bridgeland stability
conditions on Db(X)

2. These paths are convergent in a partial compactification of
Stab(X)/Ga (In progress)

3. Noncommutative MMP = conjectures about canonical paths
on Stab(X)/Ga that imply previous conjectures about Db(X).
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2 Stability conditions and decompositions 7/23

Comparing definitions

Context: X smooth projective variety over C. C = Db(X).
Charge lattice Λ := H∗alg(X)⊂ H∗(X ;C). Mukai vector map

v = (2πi)deg/2ch: K0(X)↠ Λ.

Stability condition:
• Pφ ⊂ C semistable, φ ∈ R

• semiorthogonality for Hom
• every E ∈ C has a filtration

with grφ (E) ∈Pφ

• Pφ [1] = Pφ+1

SOD:
• C = ⟨C1, . . . ,Cn⟩, C j ⊂ C

• semiorthogonality for Hom
• every E ∈ C has a filtration

with gri(E) ∈ Ci

• Ci[1] = Ci
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2 Stability conditions and decompositions 8/23

Continuous data
Stability condition:

Central charge homomorphism
Z : Λ→ C with
• Z(Pφ )⊂ R>0 · eiπφ

• support property

SOD:

???

Theorem (Bridgeland)
Forgetful map Stab(C )→ Hom(Λ,C) taking (P•,Z) 7→ Z is a
local homeomorphism (for natural metric topology on Stab).

⇒ Important observation: Paths in Stab(C ) are determined by
starting point and a path in Hom(Λ,C).
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2 Stability conditions and decompositions 9/23

Let σt be a path in Stab(C ) satisfying “quasi-convergence”:
1. ∀E ∈ C , Harder-Narasimhan filtration stabilizes for t≫ 0;

2. ∀ eventually semistable E,

logZt(E) = αEt +βE +o(1) for some αE ,βE ∈ C;

3. If ℑ(αE) = ℑ(αF), then αE = αF .

Lemma (Key Lemma)
∃ a SOD C = ⟨C1, . . . ,Cn⟩ and α1, . . . ,αn ∈ C, where
ℑ(α1)< .. . < ℑ(αn) and

Ci ⊂ C is generated by eventually semistable E with αE = αi.

Furthermore each Ci admits a stability condition whose
semistable objects are eventually semistable and Zi(E) = eβE .
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2 Stability conditions and decompositions 10/23

Key lemma

Proof idea.
Let G j := gr j E for the eventual HN filtration of E. Then
φt(G j)∼ ℑ(αG jt +βG j)/π is increasing in j for all t≫ 0, so
ℑ(αG j) is increasing in j. The filtration for the SOD is the
coarsening of this filtration that groups terms with the same
α .

Proposition (Partial converse to key lemma)
Any SOD where all the factors admit stability conditions can be
recovered from a quasi-convergent path. (Because C is smooth
and proper)

↱ Uses Collins-Polishchuk gluing construction

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)
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2 Stability conditions and decompositions 11/23

A proposal

Folklore categorical analogy
(stability condition on Db(X)) ↔ (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

Principle
Categorical birational geometry = the study of SOD’s of Db(X)
in which every factor admits a stability condition.

↑
“polarizable” SOD’s
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2 Stability conditions and decompositions 12/23

Example: no phantoms

Lemma
If C is smooth and proper, dim(K0(C )⊗Q) = 1, and C admits
a stability condition, then C is generated by a single exceptional
object.

So, if SOD is “polarizable” and it looks like it comes from a full
exceptional collection on the level of K-theory, then it does.

Example
On the Barlow surface, Db(X) = ⟨L1, . . . ,L10,

⊥{L1, . . . ,L10}⟩ can
not arise from a quasi-convergent path in Stab(X).
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2 Stability conditions and decompositions 13/23

Plan for the remainder of the talk

1. “Bordification” of Stab(C )/Ga

2. Formulate the noncommutative minimal model program
3. Discuss consequences
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3 Boundary of the space of stability conditions 14/23

What is going on in key lemma?
Fix E and consider the configuration {logZt(grHN

i (E))}n
i=1 in C:

(P1,dz) degenerates to a multi-scaled line: a marked genus 0
nodal curve with meromorphic differential (Σ,Ω) with all
components isomorphic to (P1,dz). (also has a “level structure”)

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)
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3 Boundary of the space of stability conditions 15/23

Generalized stability conditions

A generalized stability condition consists of

1. a multi-scaled line (Σ, p∞,Ω) with an “order preserving”
labeling of terminal components v1, . . . ,vn

2. an SOD C = ⟨C1, . . . ,Cn⟩
3. elements σi ∈ Stab(Ci)/Ga for all i

Regard log of central charge of σi as taking values in the
corresponding terminal component of Σ.

(Equivalence relation on generalized stability conditions is slightly
non-trivial.)
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Example of P1

Stab(P1)/Ga ∼= C. Partially compactified by the blue vertical line
at infinity. Green path is quasi-convergent.
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The space of generalized stability conditions

In progress (joint with Alekos Robotis):
• Constructing a Hausdorf space PStab(C ) containing

Stab(C )/Ga as a dense open subset.

• ∃ s.n.c. compactification Cn/Ga ⊂Mms
n by n-marked stable

multi-scaled lines. M̃ms
n := real oriented blowup of Mms

n

• ∃ locally defined continuous maps

logZ : U ⊂ PStab(C )→ M̃ms
n

• Conjecture: the logZ maps are local homeomorphisms,
making PStab(C ) a manifold with corners.
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4 The noncommutative minimal model program 18/23

The NMMP conjectures (arXiv:2301.13168)

Simplified, absolute version:

A. To any smooth projective X , one can associate a canonical
collection of quasi-convergent paths σ

ψ

t ∈ Stab(X)/Ga, and
different generic parameters ψ give mutation equivalent SOD’s

B. If π : X → X ′ is a birational morphism of smooth projective
varieties, then for suitable parameters, the SOD for X refines
the SOD obtained by combining

Db(X) = ⟨ker(π∗),π∗(Db(X ′))⟩

with the SOD of Db(X ′)∼= π∗(Db(X ′)).
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4 The noncommutative minimal model program 19/23

Consequences
Assuming the NMMP conjectures:

Proposition
Given a smooth projective X with h0(KX)> 0, ∃ an admissible
category MX ⊂ Db(X), supported on all of X , such that for any
X ′ that is birational to X , one has an admissible embedding
MX ⊂ Db(X ′).

MX , the noncommutative minimal model, is a birational
invariant of X .

Corollary
If X 99K X ′ and |KX | is baspoint free, then ∃ admissible
embedding Db(X) ↪→ Db(X ′), which is an equivalence if |KX ′| is
also basepoint free.
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Illustrating the idea in an example.
The Atiyah flop: Simplest example of a 3-fold flop Y ← X → Y+.
∃ two semiorthogonal decompositions

Db(X) = ⟨E1,E0,Db(Y )⟩
= ⟨E+

2 ,E+
1 ,Db(Y+)⟩

Mutation functor gives an
equivalence Db(Y )∼= Db(Y+).

E1 E0 Db(Y )

E+
0

E+
1E+

2 Db(Y+)
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4 The noncommutative minimal model program 21/23

More precise proposal for canonical paths
QDE Proposal: ∃ quasi-convergent paths in Stab(X)/Ga with
central charge

Zt(E) =
∫

X
Φt(vE) for E ∈ Db(X),

with Φt ∈ End(H∗alg(X)C) a fundamental solution of a
(truncated) quantum differential equation for ξ (t) ∈ H∗alg(X)C

0 = t
dξ

dt
+ z−1c1(X)⋆ψ+ln(t) ξ . (1)

Spanning Condition
(Informal version) Any asymptotic class of solutions of (1) is
spanned by Φt(vE) for some eventually semistable E.
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4 The noncommutative minimal model program 22/23

Relationship to Dubrovin / Gamma conjectures

Proposition
Db(X) admits a full exceptional collection if:
• Ch : K0(X)⊗C→ H∗(X ;C) is bijective;
• The QDE Proposal and Spanning Condition hold; and
• The eigenvalues of c1(X)⋆ψ (−) are distinct.

Example (It works for Db(P1))
Iritani’s “quantum cohomology central charge” Zt,ψ(E) lifts to a
path in Stab(P1)/Ga ∼= C∼= H2(P1;C) that starts at ψ and
moves straight to the right.
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4 The noncommutative minimal model program 23/23

Relationship to blowup formula
One can recover the Hodge structure on Ktop(X) from Db(X).

Decategorification

Any SOD of Db(X)⇝
Direct sum decomposition of the
Hodge structure on Ktop

0 (X)

NMMP implies canonical (semiorthogonal) decompositions of
Ktop(X), up to mutation.

Question (Hodge theoretic MMP)
Can one see these decompositions directly from truncated QDE?

↱ Alternative version of the Katzarkov-Kontsevich-Pantev-Yu
blowup formula conjecture.
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