The noncommutative minimal model program

Northwestern, May 19, 2023

Daniel Halpern-Leistner

Partially in collaboration with Alekos Robotis

Outline

1 Background

1/23

1 Background

2 Stability conditions and decompositions

- 2 Stability conditions and decompositions
- 3 Boundary of the space of stability conditions

- 2 Stability conditions and decompositions
- 3 Boundary of the space of stability conditions
- 4 The noncommutative minimal model program

Structure of Derived Categories

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

Hidden structure

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

Hidden structure

1. Unexpected equivalences $D^b(X) \cong D^b(X')$,

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

Hidden structure

- 1. Unexpected equivalences $D^b(X) \cong D^b(X')$,
- 2. Unexpected symmetries, i.e., group actions on $D^b(X)$,

What is fascinating about the bounded derived category of coherent sheaves $D^b(X)$ on a smooth projective variety X?

Hidden structure

- 1. Unexpected equivalences $D^b(X) \cong D^b(X')$,
- 2. Unexpected symmetries, i.e., group actions on $D^b(X)$,
- 3. Unexpected decompositions of $D^b(X)$ into simpler pieces.

Example 1: D-equivalence conjecture

Conjecture

$D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Example 1: D-equivalence conjecture

Conjecture

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Known in two situations:

1. When $\dim(X) = 3$ (Bridgeland '00)

Example 1: D-equivalence conjecture

Conjecture

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Known in two situations:

- 1. When dim(X) = 3 (Bridgeland '00)
- 2. When X is birational to a moduli space of sheaves on a K3 surface (H-L '20)

Example 1: D-equivalence conjecture

Conjecture

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Known in two situations:

- 1. When dim(X) = 3 (Bridgeland '00)
- 2. When X is birational to a moduli space of sheaves on a K3 surface (H-L '20)

Ingredients

MMP to reduce the problem to a single flop,

Example 1: D-equivalence conjecture

Conjecture

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Known in two situations:

- 1. When dim(X) = 3 (Bridgeland '00)
- 2. When X is birational to a moduli space of sheaves on a K3 surface (H-L '20)

Ingredients

MMP to reduce the problem to a single flop, good control over singularities,

Example 1: D-equivalence conjecture

Conjecture

 $D^b(X) \cong D^b(X')$ for birationally equivalent projective Calabi-Yau manifolds.

Known in two situations:

- 1. When dim(X) = 3 (Bridgeland '00)
- 2. When X is birational to a moduli space of sheaves on a K3 surface (H-L '20)

Ingredients

 MMP to reduce the problem to a single flop, good control over singularities, modular interpretation, \ldots

Theorem (Beilinson)

 $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\mathscr{O}, \mathscr{O}(1), \dots, \mathscr{O}(n)$.

Theorem (Beilinson)

 $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\mathscr{O}, \mathscr{O}(1), \dots, \mathscr{O}(n)$.

Consequences:

- 1. Decomposition for topological invariants of \mathbb{P}^n ,
- 2. Reduce homological algebra of sheaves to that of modules over $A = \text{End}(\mathscr{O} \oplus \cdots \oplus \mathscr{O}(n))$.

Theorem (Beilinson)

 $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\mathscr{O}, \mathscr{O}(1), \dots, \mathscr{O}(n)$.

Consequences:

- 1. Decomposition for topological invariants of \mathbb{P}^n ,
- 2. Reduce homological algebra of sheaves to that of modules over $A = \text{End}(\mathscr{O} \oplus \cdots \oplus \mathscr{O}(n))$.

(Generalization: semiorthogonal decompositions of $D^b(X)$)

Theorem (Beilinson)

 $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\mathscr{O}, \mathscr{O}(1), \dots, \mathscr{O}(n)$.

Consequences:

- 1. Decomposition for topological invariants of \mathbb{P}^n ,
- 2. Reduce homological algebra of sheaves to that of modules over $A = \text{End}(\mathscr{O} \oplus \cdots \oplus \mathscr{O}(n))$.

(Generalization: semiorthogonal decompositions of $D^b(X)$)

Question

How common is this phenomenon?

Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and only if its big quantum cohomology is generically semisimple.

Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and only if its big quantum cohomology is generically semisimple.

The search is complicated by:

Existence of phantoms

Exceptional collections in $D^b(X)$ that span $K_0(X)$ but do *NOT* generate $D^b(X)$:

Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and only if its big quantum cohomology is generically semisimple.

The search is complicated by:

Existence of phantoms

Exceptional collections in $D^b(X)$ that span $K_0(X)$ but do *NOT* generate $D^b(X)$:

• Barlow surfaces (GGvBKS,'12).

Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and only if its big quantum cohomology is generically semisimple.

The search is complicated by:

Existence of phantoms

Exceptional collections in $D^b(X)$ that span $K_0(X)$ but do *NOT* generate $D^b(X)$:

- Barlow surfaces (GGvBKS,'12).
- \mathbb{P}^2 blown up at 10 general points (Krah, '23).

Goal

Provide a *mechanism* for many conjectures about $D^b(X)$ that is more direct than appealing to homological mirror symmetry.

Key points:

Goal

Provide a *mechanism* for many conjectures about $D^b(X)$ that is more direct than appealing to homological mirror symmetry.

Key points:

1. Semiorthogonal decompositions (SOD's) of $D^b(X)$ arise from certain paths in Stab(X), the space of Bridgeland stability conditions on $D^b(X)$

Goal

Provide a *mechanism* for many conjectures about $D^b(X)$ that is more direct than appealing to homological mirror symmetry.

Key points:

- 1. Semiorthogonal decompositions (SOD's) of $D^b(X)$ arise from certain paths in Stab(X), the space of Bridgeland stability conditions on $D^b(X)$
- 2. These paths are convergent in a partial compactification of $\operatorname{Stab}(X)/\mathbb{G}_a$ (In progress)

Goal

Provide a *mechanism* for many conjectures about $D^b(X)$ that is more direct than appealing to homological mirror symmetry.

Key points:

- 1. Semiorthogonal decompositions (SOD's) of $D^b(X)$ arise from certain paths in Stab(X), the space of Bridgeland stability conditions on $D^b(X)$
- 2. These paths are convergent in a partial compactification of $\operatorname{Stab}(X)/\mathbb{G}_a$ (In progress)
- 3. Noncommutative MMP = conjectures about canonical paths on $\operatorname{Stab}(X)/\mathbb{G}_a$ that imply previous conjectures about $D^b(X)$.

Comparing definitions

Context: X smooth projective variety over \mathbb{C} . $\mathscr{C} = D^b(X)$. Charge lattice $\Lambda := H^*_{alg}(X) \subset H^*(X;\mathbb{C})$. Mukai vector map

$$v = (2\pi i)^{\deg/2} \operatorname{ch} \colon K_0(X) \twoheadrightarrow \Lambda.$$

Comparing definitions

Context: X smooth projective variety over \mathbb{C} . $\mathscr{C} = D^b(X)$. Charge lattice $\Lambda := H^*_{alg}(X) \subset H^*(X;\mathbb{C})$. Mukai vector map

$$v = (2\pi i)^{\deg/2} \operatorname{ch} \colon K_0(X) \twoheadrightarrow \Lambda.$$

Stability condition:SOD:• $\mathscr{P}_{\phi} \subset \mathscr{C}$ semistable, $\phi \in \mathbb{R}$ • $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$, $\mathscr{C}_j \subset \mathscr{C}$

Comparing definitions

Context: X smooth projective variety over \mathbb{C} . $\mathscr{C} = D^b(X)$. Charge lattice $\Lambda := H^*_{alg}(X) \subset H^*(X;\mathbb{C})$. Mukai vector map

$$v = (2\pi i)^{\deg/2} \operatorname{ch} \colon K_0(X) \twoheadrightarrow \Lambda.$$

Stability condition:

- $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$, $\mathscr{C}_j \subset \mathscr{C}$
 - semiorthogonality for Hom

- $\mathscr{P}_{\phi} \subset \mathscr{C}$ semistable, $\phi \in \mathbb{R}$
- semiorthogonality for Hom

Comparing definitions

Context: X smooth projective variety over \mathbb{C} . $\mathscr{C} = D^b(X)$. Charge lattice $\Lambda := H^*_{alg}(X) \subset H^*(X;\mathbb{C})$. Mukai vector map

$$v = (2\pi i)^{\deg/2} \operatorname{ch} \colon K_0(X) \twoheadrightarrow \Lambda.$$

Stability condition:

- $\mathscr{P}_{\phi} \subset \mathscr{C}$ semistable, $\phi \in \mathbb{R}$
- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_{\phi}(E) \in \mathscr{P}_{\phi}$

•
$$\mathscr{C} = \langle \mathscr{C}_1, \ldots, \mathscr{C}_n \rangle, \ \mathscr{C}_j \subset \mathscr{C}$$

- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_i(E) \in \mathscr{C}_i$

Comparing definitions

Context: X smooth projective variety over \mathbb{C} . $\mathscr{C} = D^b(X)$. Charge lattice $\Lambda := H^*_{alg}(X) \subset H^*(X;\mathbb{C})$. Mukai vector map

$$v = (2\pi i)^{\deg/2} \operatorname{ch} \colon K_0(X) \twoheadrightarrow \Lambda_{\mathbb{C}}$$

Stability condition:

- $\mathscr{P}_{\phi} \subset \mathscr{C}$ semistable, $\phi \in \mathbb{R}$
- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_{\phi}(E) \in \mathscr{P}_{\phi}$
- $\mathscr{P}_{\phi}[1] = \mathscr{P}_{\phi+1}$

- $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$, $\mathscr{C}_j \subset \mathscr{C}$
- semiorthogonality for Hom
- every $E \in \mathscr{C}$ has a filtration with $\operatorname{gr}_i(E) \in \mathscr{C}_i$
- $\mathscr{C}_i[1] = \mathscr{C}_i$

Continuous data

Stability condition:

- Central charge homomorphism $Z:\Lambda\to\mathbb{C}$ with
- $Z(\mathscr{P}_{\phi}) \subset \mathbb{R}_{>0} \cdot e^{i\pi\phi}$
- support property

Continuous data

Stability condition:

- Central charge homomorphism $Z:\Lambda \rightarrow \mathbb{C}$ with
- $Z(\mathscr{P}_{\phi}) \subset \mathbb{R}_{>0} \cdot e^{i\pi\phi}$
- support property

Theorem (Bridgeland)

Forgetful map $\operatorname{Stab}(\mathscr{C}) \to \operatorname{Hom}(\Lambda, \mathbb{C})$ taking $(\mathscr{P}_{\bullet}, Z) \mapsto Z$ is a local homeomorphism (for natural metric topology on Stab).

Continuous data

Stability condition:

- Central charge homomorphism $Z:\Lambda \rightarrow \mathbb{C}$ with
- $Z(\mathscr{P}_{\phi}) \subset \mathbb{R}_{>0} \cdot e^{i\pi\phi}$
- support property

Theorem (Bridgeland)

Forgetful map $\operatorname{Stab}(\mathscr{C}) \to \operatorname{Hom}(\Lambda, \mathbb{C})$ taking $(\mathscr{P}_{\bullet}, Z) \mapsto Z$ is a local homeomorphism (for natural metric topology on Stab).

 \Rightarrow Important observation: *Paths* in Stab(\mathscr{C}) are determined by starting point and a path in Hom(Λ , \mathbb{C}).

Let σ_t be a path in $\text{Stab}(\mathscr{C})$ satisfying "quasi-convergence": 1. $\forall E \in \mathscr{C}$, Harder-Narasimhan filtration stabilizes for $t \gg 0$;

9/23 Let σ_t be a path in $Stab(\mathscr{C})$ satisfying "quasi-convergence": **1**. $\forall E \in \mathscr{C}$, Harder-Narasimhan filtration stabilizes for $t \gg 0$;

2. \forall eventually semistable *E*,

$$\log Z_t(E) = \alpha_E t + \beta_E + o(1)$$
 for some $\alpha_E, \beta_E \in \mathbb{C}$;

Let σ_t be a path in $\operatorname{Stab}(\mathscr{C})$ satisfying "quasi-convergence": 1. $\forall E \in \mathscr{C}$, Harder-Narasimhan filtration stabilizes for $t \gg 0$; 2. \forall eventually semistable E,

 $\log Z_t(E) = \alpha_E t + \beta_E + o(1)$ for some $\alpha_E, \beta_E \in \mathbb{C}$;

9/23

3. If
$$\mathfrak{I}(\alpha_E) = \mathfrak{I}(\alpha_F)$$
, then $\alpha_E = \alpha_F$.

Let σ_t be a path in $\operatorname{Stab}(\mathscr{C})$ satisfying "quasi-convergence": 1. $\forall E \in \mathscr{C}$, Harder-Narasimhan filtration stabilizes for $t \gg 0$; 2. \forall eventually semistable E,

 $\log Z_t(E) = \alpha_E t + \beta_E + o(1)$ for some $\alpha_E, \beta_E \in \mathbb{C}$;

3. If
$$\mathfrak{I}(\alpha_E) = \mathfrak{I}(\alpha_F)$$
, then $\alpha_E = \alpha_F$.

Lemma (Key Lemma)

$$\exists$$
 a SOD $\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$ and $\alpha_1, \dots, \alpha_n \in \mathbb{C}$, where $\mathfrak{I}(\alpha_1) < \ldots < \mathfrak{I}(\alpha_n)$ and

 $\mathscr{C}_i \subset \mathscr{C}$ is generated by eventually semistable E with $\alpha_E = \alpha_i$.

Furthermore each \mathscr{C}_i admits a stability condition whose semistable objects are eventually semistable and $Z_i(E) = e^{\beta_E}$.

Key lemma

Proof idea.

Let $G_j := \operatorname{gr}_j E$ for the eventual HN filtration of E. Then $\phi_t(G_j) \sim \Im(\alpha_{G_j}t + \beta_{G_j})/\pi$ is increasing in j for all $t \gg 0$, so $\Im(\alpha_{G_j})$ is increasing in j. The filtration for the SOD is the coarsening of this filtration that groups terms with the same α .

10/2

Key lemma

Proof idea.

Let $G_j := \operatorname{gr}_j E$ for the eventual HN filtration of E. Then $\phi_t(G_j) \sim \Im(\alpha_{G_j}t + \beta_{G_j})/\pi$ is increasing in j for all $t \gg 0$, so $\Im(\alpha_{G_j})$ is increasing in j. The filtration for the SOD is the coarsening of this filtration that groups terms with the same α .

Proposition (Partial converse to key lemma)

Any SOD where all the factors admit stability conditions can be recovered from a quasi-convergent path. (Because \mathscr{C} is smooth and proper)

 \simeq Uses Collins-Polishchuk gluing construction

A proposal

Folklore categorical analogy

(stability condition on $D^b(X)$) \leftrightarrow (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

11/23

A proposal

Folklore categorical analogy

(stability condition on $D^b(X)$) \leftrightarrow (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

Principle

Categorical birational geometry = the study of SOD's of $D^b(X)$ in which every factor admits a stability condition.

12/23

Example: no phantoms

Lemma

If \mathscr{C} is smooth and proper, $\dim(K_0(\mathscr{C}) \otimes \mathbb{Q}) = 1$, and \mathscr{C} admits a stability condition, then \mathscr{C} is generated by a single exceptional object.

Example: no phantoms

Lemma

If \mathscr{C} is smooth and proper, $\dim(K_0(\mathscr{C}) \otimes \mathbb{Q}) = 1$, and \mathscr{C} admits a stability condition, then \mathscr{C} is generated by a single exceptional object.

So, if SOD is "polarizable" and it looks like it comes from a full exceptional collection on the level of K-theory, then it does.

Example: no phantoms

Lemma

If \mathscr{C} is smooth and proper, $\dim(K_0(\mathscr{C}) \otimes \mathbb{Q}) = 1$, and \mathscr{C} admits a stability condition, then \mathscr{C} is generated by a single exceptional object.

So, if SOD is "polarizable" and it looks like it comes from a full exceptional collection on the level of K-theory, then it does.

Example

On the Barlow surface, $D^b(X) = \langle L_1, \dots, L_{10}, {}^{\perp} \{L_1, \dots, L_{10}\} \rangle$ can not arise from a quasi-convergent path in Stab(X).

13/23

Plan for the remainder of the talk

- 1. "Bordification" of $\operatorname{Stab}(\mathscr{C})/\mathbb{G}_a$
- 2. Formulate the noncommutative minimal model program
- 3. Discuss consequences

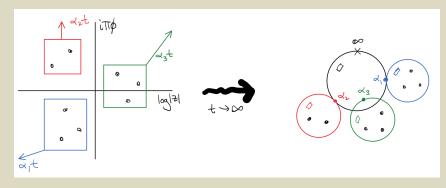
What is going on in key lemma?

Fix *E* and consider the configuration $\{\log Z_t(\operatorname{gr}_i^{HN}(E))\}_{i=1}^n$ in \mathbb{C} :

14/23

What is going on in key lemma?

Fix *E* and consider the configuration $\{\log Z_t(\operatorname{gr}_i^{HN}(E))\}_{i=1}^n$ in \mathbb{C} :



 (\mathbb{P}^1, dz) degenerates to a *multi-scaled line*: a marked genus 0 nodal curve with meromorphic differential (Σ, Ω) with all components isomorphic to (\mathbb{P}^1, dz) . (also has a "level structure")

A generalized stability condition consists of

A generalized stability condition consists of

1. a multi-scaled line $(\Sigma, p_{\infty}, \Omega)$ with an "order preserving" labeling of terminal components v_1, \ldots, v_n

A generalized stability condition consists of

1. a multi-scaled line $(\Sigma, p_{\infty}, \Omega)$ with an "order preserving" labeling of terminal components v_1, \ldots, v_n

2. an SOD
$$\mathscr{C} = \langle \mathscr{C}_1, \ldots, \mathscr{C}_n \rangle$$

A generalized stability condition consists of

1. a multi-scaled line $(\Sigma, p_{\infty}, \Omega)$ with an "order preserving" labeling of terminal components v_1, \ldots, v_n

2. an SOD
$$\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$$

3. elements
$$\sigma_i \in \operatorname{Stab}(\mathscr{C}_i)/\mathbb{G}_a$$
 for all i

A generalized stability condition consists of

1. a multi-scaled line $(\Sigma, p_{\infty}, \Omega)$ with an "order preserving" labeling of terminal components v_1, \ldots, v_n

2. an SOD
$$\mathscr{C} = \langle \mathscr{C}_1, \dots, \mathscr{C}_n \rangle$$

3. elements $\sigma_i \in \operatorname{Stab}(\mathscr{C}_i)/\mathbb{G}_a$ for all i

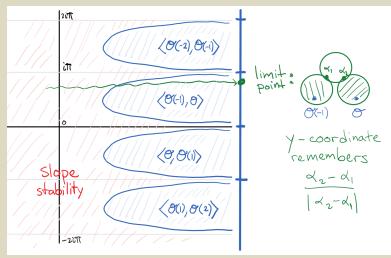
Regard log of central charge of σ_i as taking values in the corresponding terminal component of Σ .

(Equivalence relation on generalized stability conditions is slightly non-trivial.)

Example of \mathbb{P}^1

 $\operatorname{Stab}(\mathbb{P}^1)/\mathbb{G}_a \cong \mathbb{C}$. Partially compactified by the blue vertical line at infinity. Green path is quasi-convergent.

16/23



In progress (joint with Alekos Robotis):

In progress (joint with Alekos Robotis):

- Constructing a Hausdorf space $\overline{\mathbb{P}\operatorname{Stab}}(\mathscr{C})$ containing $\operatorname{Stab}(\mathscr{C})/\mathbb{G}_a$ as a dense open subset.
- \exists s.n.c. compactification $\mathbb{C}^n/\mathbb{G}_a \subset M_n^{ms}$ by *n*-marked stable multi-scaled lines. $\tilde{M}_n^{ms} :=$ real oriented blowup of M_n^{ms}

In progress (joint with Alekos Robotis):

- \exists s.n.c. compactification $\mathbb{C}^n/\mathbb{G}_a \subset M_n^{ms}$ by *n*-marked stable multi-scaled lines. $\tilde{M}_n^{ms} :=$ real oriented blowup of M_n^{ms}
- ∃ locally defined continuous maps

$$\log Z: U \subset \overline{\mathbb{P}\operatorname{Stab}}(\mathscr{C}) \to \tilde{M}_n^{ms}$$

In progress (joint with Alekos Robotis):

- \exists s.n.c. compactification $\mathbb{C}^n/\mathbb{G}_a \subset M_n^{ms}$ by *n*-marked stable multi-scaled lines. $\tilde{M}_n^{ms} :=$ real oriented blowup of M_n^{ms}
- ∃ locally defined continuous maps

$$\log Z: U \subset \overline{\mathbb{P}\operatorname{Stab}}(\mathscr{C}) \to \tilde{M}_n^{ms}$$

 Conjecture: the logZ maps are local homeomorphisms, making PStab(𝒞) a manifold with corners.

18/23

The NMMP conjectures (arXiv:2301.13168)

Simplified, absolute version:

A. To any smooth projective X, one can associate a canonical collection of quasi-convergent paths $\sigma_t^{\psi} \in \operatorname{Stab}(X)/\mathbb{G}_a$, and different generic parameters ψ give mutation equivalent SOD's

The NMMP conjectures (arXiv:2301.13168)

Simplified, absolute version:

A. To any smooth projective X, one can associate a canonical collection of quasi-convergent paths $\sigma_t^{\psi} \in \operatorname{Stab}(X)/\mathbb{G}_a$, and different generic parameters ψ give mutation equivalent SOD's

B. If $\pi: X \to X'$ is a birational morphism of smooth projective varieties, then for suitable parameters, the SOD for X refines the SOD obtained by combining

$$D^{b}(X) = \langle \ker(\pi_{*}), \pi^{*}(D^{b}(X')) \rangle$$

with the SOD of $D^b(X') \cong \pi^*(D^b(X')).$

Consequences

Assuming the NMMP conjectures:

Proposition

Given a smooth projective X with $h^0(K_X) > 0$, \exists an admissible category $\mathscr{M}_X \subset D^b(X)$, supported on all of X, such that for any X' that is birational to X, one has an admissible embedding $\mathscr{M}_X \subset D^b(X')$.

19/23

Consequences

Assuming the NMMP conjectures:

Proposition

Given a smooth projective X with $h^0(K_X) > 0$, \exists an admissible category $\mathscr{M}_X \subset D^b(X)$, supported on all of X, such that for any X' that is birational to X, one has an admissible embedding $\mathscr{M}_X \subset D^b(X')$.

 \mathcal{M}_X , the noncommutative minimal model, is a birational invariant of X.

Corollary

If $X \dashrightarrow X'$ and $|K_X|$ is baspoint free, then \exists admissible embedding $D^b(X) \hookrightarrow D^b(X')$, which is an equivalence if $|K_{X'}|$ is also basepoint free.

Illustrating the idea in an example.

The Atiyah flop: Simplest example of a 3-fold flop $Y \leftarrow X \rightarrow Y^+$. \exists two semiorthogonal decompositions

Illustrating the idea in an example.

The Atiyah flop: Simplest example of a 3-fold flop $Y \leftarrow X \rightarrow Y^+$. \exists two semiorthogonal decompositions

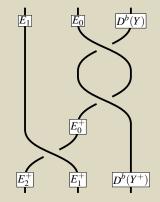
$$D^{b}(X) = \langle E_{1}, E_{0}, D^{b}(Y) \rangle$$
$$= \langle E_{2}^{+}, E_{1}^{+}, D^{b}(Y^{+}) \rangle$$

Illustrating the idea in an example.

The Atiyah flop: Simplest example of a 3-fold flop $Y \leftarrow X \rightarrow Y^+$. \exists two semiorthogonal decompositions

$$D^{b}(X) = \langle E_{1}, E_{0}, D^{b}(Y) \rangle$$
$$= \langle E_{2}^{+}, E_{1}^{+}, D^{b}(Y^{+}) \rangle$$

Mutation functor gives an equivalence $D^b(Y) \cong D^b(Y^+)$.



More precise proposal for canonical paths

QDE Proposal: \exists quasi-convergent paths in $\operatorname{Stab}(X)/\mathbb{G}_a$ with central charge

$$Z_t(E) = \int_X \Phi_t(v_E) \quad \text{for} \quad E \in D^b(X),$$

21/23

More precise proposal for canonical paths

QDE Proposal: \exists quasi-convergent paths in $\operatorname{Stab}(X)/\mathbb{G}_a$ with central charge

$$Z_t(E) = \int_X \Phi_t(v_E) \quad \text{for} \quad E \in D^b(X),$$

with $\Phi_t \in \operatorname{End}(H^*_{\operatorname{alg}}(X)_{\mathbb{C}})$ a fundamental solution of a (truncated) quantum differential equation for $\xi(t) \in H^*_{\operatorname{alg}}(X)_{\mathbb{C}}$

$$0 = t \frac{d\xi}{dt} + z^{-1} c_1(X) \star_{\psi + \ln(t)} \xi.$$
 (1)

21/23

More precise proposal for canonical paths

QDE Proposal: \exists quasi-convergent paths in $\operatorname{Stab}(X)/\mathbb{G}_a$ with central charge

$$Z_t(E) = \int_X \Phi_t(v_E) \quad \text{for} \quad E \in D^b(X),$$

with $\Phi_t \in \operatorname{End}(H^*_{\operatorname{alg}}(X)_{\mathbb{C}})$ a fundamental solution of a (truncated) quantum differential equation for $\xi(t) \in H^*_{\operatorname{alg}}(X)_{\mathbb{C}}$

$$0 = t \frac{d\xi}{dt} + z^{-1} c_1(X) \star_{\psi + \ln(t)} \xi.$$
 (1)

Spanning Condition

(Informal version) Any asymptotic class of solutions of (1) is spanned by $\Phi_t(v_E)$ for some eventually semistable *E*.

Relationship to Dubrovin / Gamma conjectures

Proposition

 $D^b(X)$ admits a full exceptional collection if:

- $Ch: K_0(X) \otimes \mathbb{C} \to H^*(X; \mathbb{C})$ is bijective;
- The QDE Proposal and Spanning Condition hold; and
- The eigenvalues of $c_1(X) \star_{\psi}(-)$ are distinct.

22/23

Relationship to Dubrovin / Gamma conjectures

Proposition

 $D^b(X)$ admits a full exceptional collection if:

- $Ch: K_0(X) \otimes \mathbb{C} \to H^*(X; \mathbb{C})$ is bijective;
- The QDE Proposal and Spanning Condition hold; and
- The eigenvalues of $c_1(X) \star_{\psi}(-)$ are distinct.

Example (It works for $D^b(\mathbb{P}^1)$)

Iritani's "quantum cohomology central charge" $Z_{t,\psi}(E)$ lifts to a path in $\operatorname{Stab}(\mathbb{P}^1)/\mathbb{G}_a \cong \mathbb{C} \cong H^2(\mathbb{P}^1;\mathbb{C})$ that starts at ψ and moves straight to the right.

22/23

Relationship to blowup formula

One can recover the Hodge structure on $K^{\text{top}}(X)$ from $D^{b}(X)$.

Decategorification

Any SOD of $D^b(X) \rightsquigarrow$ Direct sum decomposition of the Hodge structure on $K_0^{top}(X)$

Relationship to blowup formula

One can recover the Hodge structure on $K^{\text{top}}(X)$ from $D^{b}(X)$.

Decategorification

Any SOD of $D^b(X) \rightsquigarrow$ Direct sum decomposition of the Hodge structure on $K_0^{top}(X)$

NMMP implies canonical (semiorthogonal) decompositions of $K^{\text{top}}(X)$, up to mutation.

Relationship to blowup formula

One can recover the Hodge structure on $K^{\text{top}}(X)$ from $D^{b}(X)$.

Decategorification

Any SOD of $D^b(X) \rightsquigarrow$ Direct sum decomposition of the Hodge structure on $K_0^{top}(X)$

NMMP implies canonical (semiorthogonal) decompositions of $K^{\mathrm{top}}(X)$, up to mutation.

Question (Hodge theoretic MMP)

Can one see these decompositions directly from truncated QDE?

Alternative version of the Katzarkov-Kontsevich-Pantev-Yu blowup formula conjecture.