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1 Background

Structure of Derived Categories

What is fascinating about the bounded derived category of
coherent sheaves D”(X) on a smooth projective variety X?
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1 Background

Hidden Structure of Derived Categories

What is fascinating about the bounded derived category of
coherent sheaves D”(X) on a smooth projective variety X?

Hidden structure
1. Unexpected equivalences D?(X) = pb(X’),

2. Unexpected symmetries, i.e., group actions on D?(X),
3. Unexpected decompositions of D?(X) into simpler pieces.
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1 Background

Example 1: D-equivalence conjecture

D?(X) = D?(X’) for birationally equivalent projective Calabi-Yau
manifolds.
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le 1: D-equivalence conjecture

Examp

D?(X) = D?(X’) for birationally equivalent projective Calabi-Yau
manifolds.

Known in two situations:

1. When dim(X) = 3 (Bridgeland '00)

2. When X is birational to a moduli space of sheaves on a K3
surface (H-L ‘20)

Ingredients

MMP to reduce the problem to a single flop, good control over
singularities, modular interpretation, ...
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Example 2: Full exceptional collections

Theorem (Beilinson)

DP(P") admits a full exceptional collection &, 0(1),...,0(n).
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1 Background 4/23

Example 2: Full exceptional collections

Theorem (Beilinson)

DP(P") admits a full exceptional collection &, &'(1)

Consequences:
1. Decomposition for topological invariants of P”,

2. Reduce homological algebra of sheaves to that of modules
over A=End(0&---& O(n)).

(Generalization: semiorthogonal decompositions of D?(X))

Question

How common is this phenomenon?
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1 Background

Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and
only if its big quantum cohomology is generically semisimple.
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Finding full exceptional collections

Conjecture (Dubrovin)

A smooth Fano variety has a full exceptional collection if and
only if its big quantum cohomology is generically semisimple.

The search is complicated by:

Existence of phantoms

Exceptional collections in D’(X) that span Ko(X) but do NOT
generate D?(X):

* Barlow surfaces (GGvBKS,'12).
o P2 blown up at 10 general points (Krah, ‘23).
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Goal

Provide a mechanism for many conjectures about D”(X) that is
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1 Background

Plan for talk

Goal

Provide a mechanism for many conjectures about D”(X) that is
more direct than appealing to homological mirror symmetry.

Key points:

1. Semiorthogonal decompositions (SOD’s) of D?(X) arise from
certain paths in Stab(X), the space of Bridgeland stability
conditions on D?(X)

2. These paths are convergent in a partial compactification of
Stab(X)/G, (In progress)

3. Noncommutative MMP = conjectures about canonical paths
on Stab(X)/G, that imply previous conjectures about D?(X).
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2 Stability conditions and decompositions

Comparing definitions

Context: X smooth projective variety over C. ¢ = D”(X).

Charge lattice A :=Hy,(X) C H*(X;C). Mukai vector map

v=(27i)%8/%ch: Ko(X) — A.
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Comparing definitions

Context: X smooth projective variety over C. ¢ = D”(X).
Charge lattice A :=Hy,(X) C H*(X;C). Mukai vector map

v=(27i)%8/%ch: Ko(X) — A.

Stability condition: SOD:

* Py C € semistable, p € R ° %:(CKI,_”,%n),%jCCK

e semiorthogonality for Hom e semiorthogonality for Hom

e every E € € has a filtration e every E € ¥ has a filtration
with gry(E) € Py with gr;(E) € 6;
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2 Stability conditions and decompositions

Comparing definitions

Context: X smooth projective variety over C. ¢ = D”(X).

Charge lattice A := H},

21g(X) C H*(X;C). Mukai vector map

v=(27i)%8/%ch: Ko(X) — A.

Stability condition:

* Py C € semistable, p € R
e semiorthogonality for Hom
every E € € has a filtration
with gry(E) € Py

%[1] = gz¢+1

Noncommutative MMP

SOD:

C = (Cgl,...,%n% ng CcCE
semiorthogonality for Hom
every E € € has a filtration
with gr;(E) € 6;

1] =¢
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2 Stability conditions and decompositions

Continuous data
Stability condition: SOD:

Central charge homomorphism 7277
Z: A — C with e

° Z(gzq)) CRyo- e'™9
® support property
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Continuous data
Stability condition: SOD:

Central charge homomorphism 7277
Z: A — C with e

° Z(gzq)) CRyp- s
® support property

Theorem (Bridgeland)

Forgetful map Stab(¢") — Hom(A,C) taking (#.,Z) — Z is a
local homeomorphism (for natural metric topology on Stab).
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2 Stability conditions and decompositions

Continuous data
Stability condition: SOD:

Central charge homomorphism 7277
Z: A — C with e

° Z(c@q)) CRyo- e'™9
® support property

Theorem (Bridgeland)

Forgetful map Stab(¢") — Hom(A,C) taking (#.,Z) — Z is a
local homeomorphism (for natural metric topology on Stab).

= Important observation: Paths in Stab(%’) are determined by
starting point and a path in Hom(A,C).
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2 Stability conditions and decompositions

Let o; be a path in Stab(%’) satisfying “quasi-convergence:
1. VE € €, Harder-Narasimhan filtration stabilizes for > 0;
2. V eventually semistable E,

logZ;(E) = agt + Pg + o(1) for some o, Bg € C;

3. If S(OCE) = S((XF), then og = aF.

Lemma (Key Lemma)

3aSOD ¢ = (%1,...,%,) and ay,...,a, € C, where
S(ay) <...<3(ay) and

%; C € is generated by eventually semistable E with o = «;.

Furthermore each %; admits a stability condition whose
semistable objects are eventually semistable and Z;(E) = ePt.



2 Stability conditions and decompositions

Key lemma

Proof idea

Let G := gr;E for the eventual HN filtration of E. Then

¢ (Gj) ~ (ocG t+Bg,)/ is increasing in j for all >0, so
3(06@]) is increasing in j. The filtration for the SOD is the

coarsening of this filtration that groups terms with the same

. [
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Key lemma

Proof idea.

Let G := gr;E for the eventual HN filtration of E. Then
¢ (G;) ~S3(ag;t+Pg,)/ is increasing in j for all 1 >0, so
3(ag;) is increasing in j. The filtration for the SOD is the

coarsening of this filtration that groups terms with the same
a. O

Proposition (Partial converse to key lemma)

Any SOD where all the factors admit stability conditions can be
recovered from a quasi-convergent path. (Because % is smooth
and proper)

t Uses Collins-Polishchuk gluing construction
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2 Stability conditions and decompositions

A proposal

Folklore categorical analogy

(stability condition on D?(X)) « (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)



ility conditions and decompositions 11/23

2 Stab
A proposal

Folklore categorical analogy

(stability condition on D?(X)) « (ample divisor class on X)

You can not formulate the usual MMP without ample divisors!

Principle

Categorical birational geometry = the study of SOD’s of D”(X)
in which every factor admits a stability condition.

/I\
“polarizable” SOD's

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)



2 Stability conditions and decompositions

Example: no phantoms

Lemma

If € is smooth and proper, dim(Ky(%¢) ® Q) =1, and € admits
a stability condition, then % is generated by a single exceptional

object.

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)



2 Stability conditions and decompositions

Example: no phantoms

Lemma

If € is smooth and proper, dim(Ky(%¢) ® Q) =1, and € admits
a stability condition, then % is generated by a single exceptional
object.

So, if SOD is “polarizable” and it looks like it comes from a full
exceptional collection on the level of K-theory, then it does.
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Example: no phantoms

Lemma

If € is smooth and proper, dim(Ky(%¢) ® Q) =1, and € admits
a stability condition, then % is generated by a single exceptional
object.

So, if SOD is “polarizable” and it looks like it comes from a full
exceptional collection on the level of K-theory, then it does.

Example

On the Barlow surface, D’(X) = (Ly,...,Lio,~{L1,...,L1p}) can
not arise from a quasi-convergent path in Stab(X).
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2 Stability conditions and decompositions

Plan for the remainder of the talk

1. “Bordification” of Stab(%)/G,
2. Formulate the noncommutative minimal model program

3. Discuss consequences
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3 Boundary of the space of stability conditions

What is going on in key lemma?

Fix E and consider the configuration {logZ;(grfN(E))}, in C:
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3 Boundary of the space of stability conditions

What is going on in key lemma?

Fix E and consider the configuration {logZ;(grfN(E))}, in C:

b

!

° p

BES

(P',dz) degenerates to a multi-scaled line: a marked genus 0
nodal curve with meromorphic differential (£,Q) with all
components isomorphic to (P!,dz). (also has a “level structure”)
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3 Boundary of the space of stability conditions

Generalized stability conditions

A generalized stability condition consists of

1. a multi-scaled line (X, peo, Q) with an “order preserving'
labeling of terminal components vy,...,v,

2. an SOD € = (%1,...,%,)
3. elements o; € Stab(%;) /G, for all i

1
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3 Boundary of the space of stability conditions

Generalized stability conditions

A generalized stability condition consists of

1. a multi-scaled line (X, peo, Q) with an “order preserving”
labeling of terminal components vy,...,v,

2. an SOD € = (%1,...,%,)
3. elements o; € Stab(%;) /G, for all i

Regard log of central charge of o; as taking values in the
corresponding terminal component of X.

(Equivalence relation on generalized stability conditions is slightly

non-trivial.)
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3 Boundary of the space of stability conditions

Example of P!

Stab(P!) /G, = C. Partially compactified by the blue vertical line
at infinity. Green path is quasi-convergent.

Phi 4
{OC), &)
ar T \\M\-\' ® @
e |00
(61,6
[ o= &
[ - coor&\ nock e
\ <6; S0 co VV\QW\kerS
Slape N {, - d
stolg ﬁﬁy '
{60),6G)) | <aet)
~25T



3 Boundary of the space of stability conditions

The space of generalized stability conditions

In progress (joint with Alekos Robotis):

e Constructing a Hausdorf space P Stab(%’) containing
Stab(%") /G, as a dense open subset.
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3 Boundary of the space of stability conditions

The space of generalized stability conditions

In progress (joint with Alekos Robotis):

e Constructing a Hausdorf space P Stab(%’) containing
Stab(%") /G, as a dense open subset.

e Js.n.c. compactification C"/G, C M by n-marked stable
multi-scaled lines. M** := real oriented blowup of M*

e J locally defined continuous maps

logZ : U C PStab(%) — M

e Conjecture: the logZ maps are local homeomorphisms,
making [PStab(%’) a manifold with corners.

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)



4 The noncommutative minimal model program

The NMMP conjectures (arXiv:2301.13168)

Simplified, absolute version:

A. To any smooth projective X, one can associate a canonical
collection of quasi-convergent paths 6, € Stab(X)/G,, and
different generic parameters y give mutation equivalent SOD's
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4 The noncommutative minimal model program

The NMMP conjectures (arXiv:2301.13168)

Simplified, absolute version:

A. To any smooth projective X, one can associate a canonical
collection of quasi-convergent paths 6, € Stab(X)/G,, and
different generic parameters y give mutation equivalent SOD's

B. If #:X — X' is a birational morphism of smooth projective
varieties, then for suitable parameters, the SOD for X refines
the SOD obtained by combining

D*(X) = (ker(m.), n*(D"(X)))

with the SOD of D?(X") = n*(D?(X")).
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4 The noncommutative minimal model program

Consequences

Assuming the NMMP conjectures:

Proposition

Given a smooth projective X with A°(Kx) > 0, 3 an admissible
category .#x C D"(X), supported on all of X, such that for any
X' that is birational to X, one has an admissible embedding

My C Db(X/).



4 The noncommutative minimal model program

Consequences

Assuming the NMMP conjectures:

Proposition

Given a smooth projective X with A°(Kx) > 0, 3 an admissible
category .#x C D"(X), supported on all of X, such that for any
X' that is birational to X, one has an admissible embedding
My C Db(X/).

My, the noncommutative minimal model, is a birational
invariant of X.

Corollary

If X --» X’ and |Kx| is baspoint free, then 3 admissible
embedding D?(X) < D?(X’), which is an equivalence if |[Kx/| is
also basepoint free.



4 The noncommutative minimal model program 20/23

lllustrating the idea in an example.

The Atiyah flop: Simplest example of a 3-fold flop Y + X — Y.
3 two semiorthogonal decompositions
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4 The noncommutative minimal model program

lllustrating the idea in an example.

The Atiyah flop: Simplest example of a 3-fold flop Y + X — Y.
3 two semiorthogonal decompositions

fﬂ Eo D"(Y)

D’(X) = (E1,Eo,D"(Y))
= (EJ,E,DP(YT))

Mutation functor gives an E;
equivalence Db(Y) = pP(Y™).
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4 The noncommutative minimal model program

More precise proposal for canonical paths

QDE Proposal: 3 quasi-convergent paths in Stab(X)/G, with
central charge

Zt(E):/XCIJ,(vE) for EeDP(X),
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4 The noncommutative minimal model program

More precise proposal for canonical paths

QDE Proposal: 3 quasi-convergent paths in Stab(X)/G, with
central charge

Zt(E):/XCI)t(vE) for EeD'(X),

with ®; € End(H, (X)c) a fundamental solution of a

alg
(truncated) quantum differential equation for &(r) € Hy, (X)c
daé  _
0=12> ey (%) wypam & (1)
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4 The noncommutative minimal model program

More precise proposal for canonical paths

QDE Proposal: 3 quasi-convergent paths in Stab(X)/G, with
central charge

Zt(E):/XCI)t(vE) for EeDP(X),

with ®; € End(H, (X)c) a fundamental solution of a

alg
(truncated) quantum differential equation for &(r) € Hy, (X)c
dé  _
0=12> ey (%) wypam & (1)

Spanning Condition

(Informal version) Any asymptotic class of solutions of (1) is
spanned by ®;(vg) for some eventually semistable E.

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)
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Relationship to Dubrovin / Gamma conjectures

D”(X) admits a full exceptional collection if:

° Ch:Ky(X)®C — H*(X;C) is bijective;

e The QDE Proposal and Spanning Condition hold; and
 The eigenvalues of ¢{(X)*y (—) are distinct.
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Relationship to Dubrovin / Gamma conjectures

DP(X) admits a full exceptional collection if:

° Ch:Ky(X)®C — H*(X;C) is bijective;

e The QDE Proposal and Spanning Condition hold; and
e The eigenvalues of ¢ (X)*y (—) are distinct.

Example (It works for D?(P'))

Iritani’s “quantum cohomology central charge” Z; y(E) lifts to a
path in Stab(P!)/G, = C = H?>(P';C) that starts at ¥ and
moves straight to the right.

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)
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Relationship to blowup formula

One can recover the Hodge structure on K'°P(X) from D”(X).

Decategorification

Direct sum decomposition of the
VNS
Hodge structure on K,”(X)

Any SOD of D’ (X)
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Decategorification

Direct sum decomposition of the
VNS
Hodge structure on K,”(X)

Any SOD of D’ (X)

NMMP implies canonical (semiorthogonal) decompositions of
K'"P(X), up to mutation.
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Relationship to blowup formula

One can recover the Hodge structure on K'°P(X) from D”(X).

Decategorification

Direct sum decomposition of the
Hodge structure on K,”(X)

Any SOD of D?(X) ~

NMMP implies canonical (semiorthogonal) decompositions of
K'"P(X), up to mutation.

Question (Hodge theoretic MMP)

Can one see these decompositions directly from truncated QDE?

Alternative version of the Katzarkov-Kontsevich-Pantev-Yu
blowup formula conjecture.

Noncommutative MMP Daniel Halpern-Leistner (daniel.hl@cornell.edu)
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