

Math 515-1: Derived commutative rings

Problem set 03

1. For any $j, n, s \geq 0$, compute $\text{Sq}^{2s}(c_j) = Q^{-2s}(c_j)$ in $H^*(BU_n; \mathbf{F}_2) \cong \mathbf{F}_2[c_1, \dots, c_n]$ (where $|c_j| = 2j$).
2. For any $j, n, s \geq 0$, compute $\text{Sq}^s(w_j) = Q^{-s}(w_j)$ in $H^*(BO_n; \mathbf{F}_2) \cong \mathbf{F}_2[w_1, \dots, w_n]$ (where $|w_j| = j$).
3. Compute the \mathbf{F}_2 -cohomology of the symmetric group Σ_3 as a graded-commutative ring. Compute the action of the Steenrod operations on the generators.
4. Compute the \mathbf{F}_2 -cohomology of the symmetric group Σ_4 as a graded-commutative ring. Compute the action of the Steenrod operations on the generators.
5. Compute the \mathbf{F}_2 -cohomology of the Eilenberg–Mac Lane anima $K(\mathbf{Z}, 3)$ as a graded-commutative ring. Compute the action of the Steenrod operations on the generators.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu