

Math 515-1: Derived commutative rings

Problem set 01

1. Show that if A_\bullet is a simplicial group, then it is a Kan complex.
2. Let X be a topological space. Define the singular simplicial set $\text{Sing}_\bullet(X)$. Show that it is a Kan complex.
3. We can consider the ordered set $[n] = \{0 < 1 < \dots < n\}$ as a category. Taken together, these form a cosimplicial category, i.e., a functor $\Delta \rightarrow \text{Cat}$. Given a category \mathcal{C} , we can consider the assignment $[n] \mapsto \text{Hom}_{\text{Cat}}([n], \mathcal{C})$, which forms a simplicial set, called the nerve of \mathcal{C} and denoted by $N_\bullet(\mathcal{C})$. Show that $N_\bullet(\mathcal{C})$ is a weak Kan complex.
4. Find necessary and sufficient conditions for a weak Kan complex to be isomorphic to $N_\bullet(\mathcal{C})$ for a category \mathcal{C} .
5. Let \mathcal{C} be a category. Find necessary and sufficient conditions for $N_\bullet(\mathcal{C})$ to be a weak Kan complex.
6. Let M be a monoid. We define BM as the category with one object $*$ and where $\text{Hom}_{BM}(*, *) = M$, with composition given by multiplication in the group. Let $B_\bullet M$ be the nerve of the category BM . Describe the simplices, face maps, and degeneracies of BM in terms of the elements of M .

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu