

We discuss in this section the notion of ‘sameness’ for categories. On the one hand, we have the innate notion of isomorphism in the category \mathbf{Cat} of categories. This notion is very strict in the sense that if $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ are inverse isomorphisms of categories, then $G \circ F$ is *equal* to the identity functor on \mathcal{C} . In particular, $G(F(c)) = c$ for every object $c \in \mathcal{C}$. Very frequently what happens instead is that one can find F and G such that $G(F(c))$ is isomorphic to c , but not equal to it. This leads to the notion of natural transformations of functors and to the notion of equivalences of categories.

Definition 12.1 (Natural transformations). Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be two functors from \mathcal{C} to \mathcal{D} . A natural transformation from F to G , written for example as $F \xrightarrow{\eta} G$, consists of a morphism $\eta_c: F(c) \rightarrow G(c)$ for each $c \in \mathcal{C}$ such that for each $f: c \rightarrow c'$ in \mathcal{C} the diagrams

$$\begin{array}{ccc} F(c) & \xrightarrow{\eta_c} & G(c) \\ F(f) \downarrow & & \downarrow G(f) \\ F(c') & \xrightarrow{\eta_{c'}} & G(c') \end{array} \quad (1)$$

commute.

Remark 12.2 (Recollection on commutative diagrams). A square

$$\begin{array}{ccc} a & \xrightarrow{f} & b \\ h \downarrow & & \downarrow i \\ c & \xrightarrow{g} & d \end{array}$$

of objects and morphisms in a category \mathcal{C} commutes if $g \circ h = i \circ f$.

Exercise 12.3. Given natural transformations $\eta: F \rightarrow G$ and $\epsilon: G \rightarrow H$ of functors $F, G, H: \mathcal{C} \rightarrow \mathcal{D}$, show that there is a composite natural transformation $\epsilon \circ \eta: F \rightarrow H$.

Exercise 12.4. Let $\text{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$ be the set of functors from \mathcal{C} to \mathcal{D} . Show that this set can be made into the set of objects of a category, which we will denote by $\text{Fun}(\mathcal{C}, \mathcal{D})$. The objects are functors and

the morphisms are natural transformations. Composition is given by your solution to Exercise 12.3.

Remark 12.5. Categories fit into a natural heirarchy of more and more complicated objects called n -categories. These have a notion of k -morphism for $1 \leq k \leq n$. In this language, 0-categories are sets and 1-categories are categories as we have discussed previously. The first example of a 2-category is an analogue of \mathbf{Cat} . Let's call it \mathbf{Cat}_1 to disambiguate it from \mathbf{Cat} for the moment. The objects of \mathbf{Cat}_1 are categories, the 1-morphisms are functors, and the 2-morphisms are natural transformations between functors. This is the beginning of a deep and beautiful subject, but we will not pursue it here.

Example 12.6. Recall that given a topological space X we have a poset $P(X)$. Given a poset P , we obtain a topological space $D(P)$ by taking the topology given by the downsets. We also observed in Theorem 10.1(a) that there is a continuous function $c_X: D(P(X)) \rightarrow X$. In fact, this defines a natural transformation $c: D \circ P \rightarrow \text{id}_{\mathbf{Top}}$. To check this, for each continuous function $f: X \rightarrow Y$, we must check that the diagram

$$\begin{array}{ccc} D(P(X)) & \xrightarrow{c_X} & X \\ D(P(f)) \downarrow & & \downarrow f \\ D(P(Y)) & \xrightarrow{c_Y} & Y \end{array}$$

commutes. However, on underlying sets, c_X and c_Y are the identities and $D(P(f)) = f$ by Theorem 10.1(d,e), so the diagram does indeed commute.

Definition 12.7 (Natural isomorphisms). Let $\eta: F \rightarrow G$ be a natural transformation of functors from \mathcal{C} to \mathcal{D} . If for each $c \in \mathcal{C}$ the morphism $\eta_c: F(c) \rightarrow G(c)$ is an isomorphism in \mathcal{D} , then we say that η is a natural isomorphism. We say that F and G are naturally isomorphic if there exists a natural isomorphism η from F to G .

Exercise 12.8. Show that η is a natural isomorphism if and only if it is an isomorphism when viewed as a morphism in the functor category $\text{Fun}(\mathcal{C}, \mathcal{D})$.

Definition 12.9 (Equivalences of categories). Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. We say that F is an

equivalence of categories if there exists a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ such that $G \circ F$ is naturally isomorphic to $\text{id}_{\mathcal{C}}$ and $F \circ G$ is naturally isomorphic to $\text{id}_{\mathcal{D}}$. We say that \mathcal{C} and \mathcal{D} are equivalent if there exists an equivalence between them. I tend to write $\mathcal{C} \simeq \mathcal{D}$ if \mathcal{C} and \mathcal{D} are equivalent and reserve \cong as the generic symbol for isomorphism.

Exercise 12.10. Show that $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence if and only if it is fully faithful and essentially surjective.

Example 12.11. Let $\mathbf{Vect}_{\mathbf{R}}^{\text{fd}}$ be the category of finite-dimensional \mathbf{R} -vector spaces and linear transformations between them. Let $\mathcal{V}_{\mathbf{R}}$ be the category with objects $\mathbf{R}^0, \mathbf{R}^1, \mathbf{R}^2, \dots$ and where $\text{Hom}_{\mathcal{V}_{\mathbf{R}}}(\mathbf{R}^n, \mathbf{R}^m)$ is equal to the set of $m \times n$ -matrices with real entries. There is a fully faithful, essentially surjective functor $\mathcal{V}_{\mathbf{R}} \rightarrow \mathbf{Vect}_{\mathbf{R}}^{\text{fd}}$, so these categories are equivalent. They are not isomorphic.

Definition 12.12 (Opposite category). Let \mathcal{C} be a category. There is another category \mathcal{C}^{op} with the same objects as \mathcal{C} but where $\text{Hom}_{\mathcal{C}^{\text{op}}}(x, y) = \text{Hom}_{\mathcal{C}}(y, x)$. It is obtained by “turning all arrows around”.

Definition 12.13. A duality between \mathcal{C} and \mathcal{D} is an equivalence $\mathcal{C} \simeq \mathcal{D}^{\text{op}}$. If $\mathcal{C} \simeq \mathcal{D}^{\text{op}}$, then $\mathcal{C}^{\text{op}} \simeq \mathcal{D}$.

There are many famous equivalences of categories in mathematics. Many of these, especially in topology, take the form of a duality between a “topological” category and an “algebraic” one. Here are a few.

- (a) The duality between sober topological spaces and locales.
- (b) The equivalence between posets and Alexandrov topological spaces.
- (c) Stone duality: the duality between Boolean algebras and completely disconnected compact Hausdorff spaces.
- (d) Gelfand duality: the duality between compact Hausdorff topological spaces and unital commutative C^* -algebras.
- (e) The Birkhoff representation theorem, a equivalence between the category of finite distributive lattices and bounded homomorphisms and the category of finite posets and order-preserving morphisms.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu