Category, space, type - Benjamin Antieau
12. Equivalences of categories

We discuss in this section the notion of ‘sameness’ for categories.
On the one hand, we have the innate notion of isomorphism in
the category Cat of categories.a This notion is very strict in the
sense that if F: € — D and G: D — € are inverse isomorphisms
of categories, then G o F' is equal to the identity functor on C. In
particular, G(F'(c)) = ¢ for every object ¢ € €. Very frequently what
happens instead is that one can find F' and G such that G(F(c))
is isomorphic to ¢, but not equal to it. This leads to the notion of
natural transformations of functors and to the notion of equivalences
of categories.

Definition 12.1 (Natural transformations). Let F,G: C —
D be two functors from € to D. A natural transformation from
F to G, written for example as F -5 G, consists of a morphism
ne: F(c) = G(c) for each ¢ € € such that for each f: ¢ — ¢ in € the
diagrams

lam (1)

commute.

Remark 12.2 (Recollection on commutative diagrams). A square
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of objects and morphisms in a category € commutes if goh =1io0 f.
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Exercise 12.3. Given natural transformations n: F' — G and
¢: G — H of functors F,G, H: € — D, show that there is a compos-
ite natural transformation eon: F' — H.

Exercise 12.4. Let Home,(C, D) be the set of functors from € to
D. Show that this set can be made into the set of objects of a category,
which we will denote by Fun(€, D). The objects are functors and



the morphisms are natural transformations. Composition is given by
your solution to Exercise 12.3.

Remark 12.5. Categories fit into a natural heirarchy of more and
more complicated objects called n-categories. These have a notion
of k-morphism for 1 < k£ < n. In this language, 0-categories are sets
and 1-categories are categories as we have discussed previously. The
first example of a 2-category is an analogue of Cat. Let’s call it Cat;
to disambiguate it from Cat for the moment. The objects of Cat;
are categories, the 1-morphisms are functors, and the 2-morphisms
are natural transformations between functors. This is the beginning
of a deep and beautiful subject, but we will not pursue it here.

Example 12.6. Recall that given a topological space X we have a
poset P(X). Given a poset P, we obtain a topological space D(P)
by taking the topology given by the downsets. We also observed in
Theorem 10.1(a) that there is a continuous function cx: D(P(X)) —
X. In fact, this defines a natural transformation c¢: D o P — idpop.
To check this, for each continuous function f: X — Y, we must
check that the diagram

D(P(X))ZE— X
D(P(f))l f
D(P(Y)) —=Y

Cy

commutes. However, on underlying sets, cx and cy are the identities
and D(P(f)) = f by Theorem 10.1(d,e), so the diagram does indeed
commute.

Definition 12.7 (Natural isomorphisms). Let n: FF — G be a
natural transformation of functors from € to D. If for each ¢ € C
the morphism 7.: F'(¢) — G(c) is an isomorphism in D, then we say
that n is a natural isomorphism. We say that F' and G are naturally
isomorphic if there exists a natural isomorphism 7 from F' to G.

Exercise 12.8. Show that 7 is a natural isomorphism if and only
if it is an isomorphism when viewed as a morphism in the functor
category Fun(C, D).

Definition 12.9 (Equivalences of categories). Let C and D
be categories and let F': € — D be a functor. We say that F'is an



equivalence of categories if there exists a functor G: D — € such
that G o F' is naturally isomorphic to ide and F' o GG is naturally
isomorphic to idp. We say that € and D are equivalent if there exists
an equivalence between them. I tend to write € ~ D if € and D are
equivalent and reserve = as the generic symbol for isomorphism.

Exercise 12.10. Show that F': € — D is an equivalence if and
only if it is fully faithful and essentially surjective.

Example 12.11. Let Vecti% be the category of finite-dimensional R-
vectors spaces and linear transformations between them. Let Vg be
the category with objects R°, R!, R?, ... and where Homy, (R", R™)
is equal to the set of m x n-matrices with real entries. There is a
fully faithful, essentially surjective functor Vg — Vectl, so these
categories are equivalent. They are not isomorphic.

Definition 12.12 (Opposite category). Let C be a category.
There is another category C°P with the same objects as € but where
Homeor (z,y) = Home(y, z). It is obtained by “turning all arrows
around”.

Definition 12.13. A duality between € and D is an equivalence
C ~ D, If €~ D, then CP ~ D.

There are many famous equivalences of categories in mathematics.
Many of these, especially in topology, take the form of a duality
between a “topological” category and an “algebraic” one. Here are a
few.

(a) The duality between sober topological spaces and locales.

(b) The equivalence between posets and Alexandrov topological
spaces.

(c) Stone duality: the duality between Boolean algebras and com-
pletely disconnected compact Hausdorff spaces.

(d) Gelfand duality: the duality between compact Hausdorff topo-
logical spaces and unital commutative C*-algebras.

(e) The Birkhoff representation theorem, a equivalence between the
category of finite distributive lattices and bounded homomor-
phisms and the category of finite posets and order-preserving
morphisms.
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