

Category, space, type - Benjamin Antieau

11. Functors

Just as we organize other kinds of mathematical objects into categories, similarly we organize categories themselves into a category, denoted $\mathcal{C}\text{at}$ below. The set of objects of $\mathcal{C}\text{at}$ is the class of categories. The morphisms in $\mathcal{C}\text{at}$ are called *functors* and are the subject of this lecture.

Definition 11.1 (Functors). Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ consists of

- (a) a function $F: \text{Ob}(\mathcal{C}) \rightarrow \text{Ob}(\mathcal{C})$
- (b) and, for each pair $x, y \in \mathcal{C}$, a function $F: \text{Hom}_{\mathcal{C}}(x, y) \rightarrow \text{Hom}_{\mathcal{D}}(F(x), F(y))$

subject to the conditions that

- (i) for each $x \in \mathcal{C}$ we should have $F(\text{id}_x) = \text{id}_{F(x)}$ and
- (ii) for each pair of morphisms $x \xrightarrow{f} y$ and $y \xrightarrow{g} z$ in \mathcal{C} we should have $F(g \circ f) = F(g) \circ F(f)$ in $\text{Hom}_{\mathcal{D}}(F(x), F(z))$.

Remark 11.2. In order to avoid slavish repetition we do not often distinguish between a functor, its action on objects, and its action on morphism. One could think of this as being defined by “overloading operators” as in a programming language. The same symbol ‘+’ might define addition between vectors, matrices, real numbers, . . . We could unpack this by defining a functor as a pair

$$F = (F_{\text{Ob}}, \{F_{(x,y)}\}_{(x,y) \in \text{Ob}(\mathcal{C})^2}),$$

where $F_{\text{Ob}}: \text{Ob}(\mathcal{C}) \rightarrow \text{Ob}(\mathcal{D})$ is a function and where $F_{(x,y)}: \text{Hom}_{\mathcal{C}}(x, y) \rightarrow \text{Hom}_{\mathcal{D}}(F_{\text{Ob}}(x), F_{\text{Ob}}(y))$ is a function for each $(x, y) \in \text{Ob}(\mathcal{C})^2$, and which satisfies (i) and (ii) above.

Example 11.3. For each category \mathcal{C} there is an identity functor $\text{id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$, obtained by taking the appropriate identities on object and morphism sets. Specifically, the identity functor is the identity *function* on $\text{Ob}(\mathcal{C})$ and for each $x, y \in \mathcal{C}$ the identity function on $\text{Hom}_{\mathcal{C}}(x, y)$.

Definition 11.4 (The category of posets). Let **Pos** be the category of posets: the objects of **Pos** are posets and, if P, Q are posets, $\text{Hom}_{\mathbf{Pos}}(P, Q)$ is the set of functions $f: P \rightarrow Q$ such that if $x \leq y$ in P , then $f(x) \leq f(y)$ in Q .

Definition 11.5 (The category of preorders). Let **PreOrd** be the category of preorders: the objects of **PreOrd** are preorders, i.e., sets P equipped with a preorder \lesssim , a reflexive and transitive binary relation. If P, Q are preorders, then $\text{Hom}_{\mathbf{PreOrd}}(P, Q)$ is the set of functions $f: P \rightarrow Q$ such that if $x \lesssim y$ in P , then $f(x) \lesssim f(y)$ in Q .

Definition 11.6 (Full subcategories). Let \mathcal{C} be a category. Fix a subset of objects $S \subseteq \text{Ob}(\mathcal{C})$. We can define a new category \mathcal{D} where $\text{Ob}(\mathcal{D}) = S$ and where if $x, y \in S$, then $\text{Hom}_{\mathcal{D}}(x, y) = \text{Hom}_{\mathcal{C}}(x, y)$. Identities and compositions are also defined using \mathcal{C} . The inclusion $S \subseteq \text{Ob}(\mathcal{C})$ allows us to define an inclusion functor $\mathcal{D} \rightarrow \mathcal{C}$ by sending an object of \mathcal{D} to its corresponding object in \mathcal{C} via $S \subseteq \text{Ob}(\mathcal{C})$.

Definition 11.7. More generally, if \mathcal{C} is a category, we can define a (possibly non-full subcategory) as in the previous definition, but where for each $x, y \in S$ we have that $\text{Hom}_{\mathcal{D}}(x, y)$ is a *subset* of $\text{Hom}_{\mathcal{C}}(x, y)$. We require $\text{Hom}_{\mathcal{D}}(x, x)$ to contain id_x (with respect to \mathcal{C}) and for this collection of subsets to be closed under composition in that if $f \in \text{Hom}_{\mathcal{D}}(x, y)$ and $g \in \text{Hom}_{\mathcal{D}}(y, z)$, then $g \circ f$ (computed in \mathcal{C}) is in $\text{Hom}_{\mathcal{D}}(x, z)$.

Example 11.8. We can view **Pos** as a full subcategory of **PreOrd**.

Example 11.9. We can let $\mathbf{Top}^{T_0} \subseteq \mathbf{Top}$ be the full subcategory of T_0 topological spaces.

Example 11.10. Let $\mathbf{Alexandrov} \subseteq \mathbf{Top}$ be the full subcategory of Alexandrov spaces. The category $\mathbf{Alexandrov}^{T_0}$ of T_0 Alexandrov spaces is a full subcategory of \mathbf{Top} , \mathbf{Top}^{T_0} , and $\mathbf{Alexandrov}^{T_0}$.

Definition 11.11 (Fully faithful functors). A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is fully faithful if for every pair $x, y \in \mathcal{C}$ the function $F: \text{Hom}_{\mathcal{C}}(x, y) \rightarrow \text{Hom}_{\mathcal{D}}(F(x), F(y))$ is a bijection.

Example 11.12. If \mathcal{D} is a full subcategory of \mathcal{C} , then the canonical inclusion functor $\mathcal{D} \rightarrow \mathcal{C}$ is fully faithful.

Definition 11.13 (Essentially surjective functors). A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is essentially surjective if for every object $d \in \mathcal{D}$ there is an object $c \in \mathcal{C}$ and an isomorphism $F(c) \cong d$ in \mathcal{D} .

Definition 11.14. Essential image Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the essential image of F is the full subcategory of \mathcal{D} consisting of those objects $d \in \mathcal{D}$ such that there exists $c \in \mathcal{C}$ such that $F(c) \cong d$.

Remark 11.15. We could also speak of the image of a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, as opposed to the essential image. This would be the full subcategory of objects $d \in \mathcal{D}$ *equal* to $F(c)$ for some $c \in \mathcal{C}$. However, the notion of essential image (and of essentially surjective) is more robust and more useful. A subcategory $\mathcal{E} \subseteq \mathcal{C}$ is *replete* if whenever $e \in \mathcal{E}$ and $c \in \mathcal{C}$ is isomorphic to e , then $c \in \mathcal{E}$.

Definition 11.16 (Specialization preorder functor). Given each topological space (X, \mathcal{U}) we have defined the specialization preorder $\lesssim_{\mathcal{U}}$ on the set of points X . This defines a functor

$$\mathbf{Top} \rightarrow \mathbf{PreOrd}.$$

Definition 11.17 (Specialization partial order functor). Restricting the specialization preorder functor to T_0 topological spaces, we can obtain a specialization poset functor

$$P: \mathbf{Top}^{T_0} \rightarrow \mathbf{Pos}.$$

The content of this is that not only if $P(X)$ a poset if X is a topological space, but if $f: X \rightarrow Y$ is a continuous function, then $P(f): P(X) \rightarrow P(Y)$ is a map of posets. (See Theorem 10.1(d).)

Construction 11.18. We have also described a functor

$$D: \mathbf{Pos} \rightarrow \mathbf{Top}^{T_0}$$

called the topological space associated to a poset which uses the downsets as the opens. If $g: P \rightarrow Q$ is a map of posets, then $D(g): D(P) \rightarrow D(Q)$ is a continuous function. (See Theorem 10.1(e).)

Construction 11.19 (Functor composition). Given categories \mathcal{C} , \mathcal{D} , and \mathcal{E} , as well as functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{E}$ there is a composite functor $G \circ F: \mathcal{C} \rightarrow \mathcal{E}$. On object sets it is the composite

$$\text{Ob}(\mathcal{C}) \xrightarrow{F} \text{Ob}(\mathcal{D}) \xrightarrow{G} \text{Ob}(\mathcal{E}).$$

For $x, y \in \mathcal{C}$, it is given as the composition

$$\text{Hom}_{\mathcal{C}}(x, y) \rightarrow \text{Hom}_{\mathcal{D}}(F(x), F(y)) \rightarrow \text{Hom}_{\mathcal{E}}(G(F(x)), G(F(y))).$$

Exercise 11.20. Show that if $F: \mathcal{C} \rightarrow \mathcal{D}$, $G: \mathcal{D} \rightarrow \mathcal{E}$, and $H: \mathcal{E} \rightarrow \mathcal{F}$ are functors, then $H \circ (G \circ F) = (H \circ G) \circ F$.

Thus, functor composition is associative.

Remark 11.21. Theorem 10.1 can be summarized as saying that \mathbf{D} is fully faithful with essential image $\mathbf{Alexandrov}^{T_0}$. More specifically, Theorem 10.1(c) implies that

$$P \circ D = \text{id}_{\mathbf{Pos}}.$$

We do not have $D \circ P = \text{id}_{\mathbf{Top}^{T_0}}$. However, we do have $P \circ D \circ P = P$. If we let $D': \mathbf{Pos} \rightarrow \mathbf{Alexandrov}^{T_0}$ be the downset topology functor, but viewed as having codomain $\mathbf{Alexandrov}^{T_0}$, and if we let $P': \mathbf{Alexandrov}^{T_0} \rightarrow \mathbf{Pos}$ be the specialization poset functor, but viewed as having domain $\mathbf{Alexandrov}^{T_0}$, then we do have

$$D' \circ P' = \text{id}_{\mathbf{Top}^{T_0}}$$

by Theorem 10.1(b).

Definition 11.22 (The category of categories). We ignore set theory, cardinality issues, and Russel's paradox and define the category \mathbf{Cat} to have as objects categories and to have as morphisms the functors, so $\text{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$ is the set of functors from \mathcal{C} to \mathcal{D} .

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
 antieau@northwestern.edu