
Category, space, type - Benjamin Antieau
10. Alexandrov spaces

Recall that an Alexandrov space is one where arbitrary intersec-
tions of open sets are open or, equivalently, if arbitrary unions of
closed sets are closed.

The purpose of this section is to prove the following theorem
which relates the specialization partial order ⩽ on a T0 topological
space to the space itself.

Theorem 10.1. (a) For any T0 topological space X, the identity on
X defines a continuous map X⩽ → X.

(b) If X is a T0 topological space, the identity map X⩽ → X is a
homeomorphism if and only if X is Alexandrov.

(c) If (P,⩽) is a poset, then the specialization partial order, say ⩽′,
on P⩽ agrees with ⩽.

(d) If X → Y is a continuous map of T0 topological spaces, then
(X,⩽) → (Y,⩽) is a map of posets.

(e) If (P,⩽) → (Q,⩽) is a map of posets, then P⩽ → Q⩽ is
continuous.

Thus, in some sense, we see an equivalence between the notions
of a T0 Alexandroff space and a poset. We will formalize this in the
next lecture.

Proof of Theorem 10.1(a). Let X be a T0 topological space. If U ⊆
X is open, then we must see that it is open in the topology X⩽. The
opens in X⩽ are precisely the downsets, the subsets V of X such
that if x ⩽ y and y ∈ V , then x ∈ V . Thus, suppose that x ⩽ y in
X and that y ∈ U . By definition of the specialization partial order,
it follows that x is in every open set containing y. In particular,
since y ∈ U , we have x ∈ U . Thus, U is a downset and the identity
X⩽ → X is continuous.

Proof of Theorem 10.1(b). Suppose that X is a T0 topological space.
If X⩽ → X is a homeomorphism, then X is indeed Alexandrov
because we observed that X⩽ is Alexandrov in Definition 8.16. Con-
versely, suppose that X is Alexandrov. The proof of part (a) shows
that if U ⊆ X is open, then U is a downset. We must show conversely
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that if U ⊆ X is a downset with respect to the specialization partial
order ⩽, then U is open.

Let u ∈ X. The principal downset associated to u is Xu = {x ∈
X|x ⩽ u}. Note that since U is a downset we must have an equality

U =
⋃
u∈U

Xu.

Thus, it suffices to see that each Xu is open in X. By definition, Xu

consists of the points x such that x is in every open set containing u.
Suppose that y is not in Xu. Then, since X is T0, there is an open
set Vy such that u ∈ Vy and y /∈ Vy. Since Vy is a downset, it follows
that Xu ⊆ Vy. Since X is Alexandrof,

V =
⋂

y/∈Xu

Vy

is open. We have Xu ⊆ V and no element not in Xu is in V . Thus,
Xu = V and Xu is open, as desired.

Proof of Theorem 10.1(c). Let (P,⩽) be a poset and consider the
specialization order ⩽′ on the topological space P⩽. The open subsets
of P⩽ are the downsets. Thus, x ⩽′ y if and only if every downset of
y contains x. In particular, x ⩽ y. Conversely, if x ⩽ y, then every
downset containing y contains x, so x ⩽′ y.

Proof of Theorem 10.1(d). Fix a continuous map f : X → Y of T0

topological spaces. We want to show that if x ⩽ y, then f(x) ⩽ f(y).
But, if U is an open neighborhood of f(y), then f−1(U) is an open
neighborhood of y and so contains x. Thus, f(x) ∈ U .

Proof of Theorem 10.1(e). Let f : P → Q be a map of posets. If
U ⊆ Q is a downset, we must show that f−1(U) is a downset. If
y ∈ f−1(U) and x ⩽ y, then f(x) ⩽ f(y). But, f(y) ∈ U and U is a
downset, so f(x) ∈ U . Thus ,x ∈ f−1(U).

Exercise 10.2. Formulate and prove the analogue of Theorem 10.1
for all Alexandrov spaces by dropping the T0 hypotheses and using
the specialization preorder ≲ and your solution to Exercise 8.17.
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