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08. Compactness

Besides the connectedness and T2, or Hausdorff, property, the
third primary property commonly imposed on a topological space is
compactness.

Definition 8.1 (Covers). Let X be a topological space and let
A ⊆ X be a subset. Let C = {Ci}i∈I ⊆ P(X) be a collection of
subsets of X for some indexing set I. We say that C is a cover of A,
or C covers A, if

A ⊆
⋃
i∈I

Ci.

If the Ci are all open, then we say that C is an open cover of A. We
will primarily be concerned with open covers.

Example 8.2. The set of objects {(−1, 1), (0, 2)} is an open cover
of (0, 1).

Example 8.3. If X is a topological space, an open cover of X is a
collection of open subsets C = {Ui}i∈I for some I such that every
element of x appears in Ui for some i ∈ I.

Definition 8.4 (Subcovers). Let C = {Ci}i∈I be a cover of a
subset A ⊆ X. A subcover of C is a subcollection D ⊆ C which is a
cover of A.

Definition 8.5 (Finite covers). A cover C is finite if it contains
finitely many elements.

Definition 8.6 (Compactness). Let X be a topological space. If
every open cover C of X has a finite subcover D ⊆ C, then we say
that X is compact. If A ⊆ X is a subset, then A is compact if
every open cover of A has a finite subcover. Equivalently, A with its
subspace topology, is compact.

Remark 8.7. Sometimes in newer work this notion is called quasi-
compactness.

Example 8.8. Finite topological spaces are compact.

Example 8.9. The discrete topology Xδ on a set X is compact if
and only if X is finite.

1



Example 8.10. The trivial topology Xtriv on a set X is compact.

Example 8.11. Metric spaces can be compact or not. For example,
R is not compact, but any discrete finite space is compact, and
metrizable.

Example 8.12. The cofinite topology on N is compact. Indeed,
if C is an open cover of N, then some open set U0 ∈ C contains
all but finitely many natural numbers, say a1, . . . , an. Since C is a
cover, there are Ui ∈ C for i = 1, . . . , n such that ai ∈ Ui. Then,
{U0, U1, . . . , Un} is a finite subcover of C which covers N.

Exercise 8.13. (a) Show that if f : X → Y is a continuous func-
tion is compact, then f(X) ⊆ Y is compact (with either the
quotient or subspace topology).

(b) Show that if f : X → Y is a continuous injection and Y is
Hausdorff, then X is Hausdorff.

Proposition 8.14. Let X be a Hausdorff space and let A ⊆ X be
compact. If x ∈ X \ A, then there are open subsets U, V ⊆ X such
that x ∈ U , A ⊆ V , and U ∩ V = ∅.
Proof. For each a ∈ A, since X is Hausdorff, we can choose Ua, Va

open subsets of X such that x ∈ U , a ∈ V , and U ∩ V = ∅. The
collection {Va}a∈A is an open cover of A. Since A is compact, there
is a finite subcover which covers A. Let a1, . . . , an be such that
Va1 , . . . , Van cover A. Then, U = Ua1 ∩ · · ·∩Uan is open and contains
a. Let V = Va1 ∪ · · · ∪ Van . Then, A ⊆ V . Also, U ∩ V = ∅, as
desired.

Figure 1: Diagram for Proposition 8.14.

Corollary 8.15. Let X be Hausdorff and suppose that A ⊆ X is
a compact subset. Then, A is closed.

Proof. Proposition 8.14 implies that if x ∈ X \ A, then there is
x ∈ U ⊆ X \ A where U is open. Thus, X \ A is open, so A is
closed.
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Lemma 8.16. Suppose that X is a compact Hausdorff topological
space. If A ⊆ X is closed, then it is compact.

Proof. Let C be an open cover of A. Then, {X \ A} ∪ C is an open
cover of X. It has a finite subcover and this finite subcover covers
A. If it contains X \ A we can throw it out and it will still cover A
and it will be a finite subcover of C. Thus, A is compact.

Theorem 8.17. Let f : X → Y be a continuous bijection. If X is
compact and Y is Hausdorff, then f is a homeomorphism.

Proof. By Exercise 8.13, X is Hausdorff and Y is compact. Let
A ⊆ X be closed. Then, it is compact by Lemma 8.16. Thus,
f(A) ⊆ Y is compact by Exercise 8.13. Thus, f(A) is closed by
Corollary 8.15. It follows that f is closed. Hence, since f is a
bijection, f is open. In otherwords, the inverse map is continuous,
so that f is a homeomorphism.

Remark 8.18 (T3 or regular Hausdorff). In a compact Haus-
dorff space, points and closed subsets (which are necessarily compact
by Lemma 8.16) can be separated by disjoint open subsets using
Proposition 8.14. This is another separation axiom which is called
being regular. This does not by itself have a “T -number”, but a
regular Hausdorff space is called T3.

Exercise 8.19. Let X be a Hausdorff space and let A,B ⊆ X be
disjoint compact subsets. Show there exist open sets U, V such that
A ⊆ U , B ⊆ V , and U ∩ V = ∅.

Remark 8.20 (Normal spaces). A topological space X is normal
if for every pair A,B ⊆ X of disjoint closed subsets, there exist open
sets U, V such that A ⊆ U , B ⊆ V , and U ∩ V = ∅. Exercise 8.19
shows that a compact Hausdorff space is normal. Normal Hausdorff
spaces are called T4.

Figure 2: Picture of normality.
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