
Category, space, type - Benjamin Antieau
07. Separation axioms

In a metric space, every two points are measurably distant from
each other. At the other extreme, for the trivial topology Xtriv on a
set X, no two points can be distinguished topologically. There is a
suite of so-called separation axioms to quantify how fine topologies
are from the perspective of separating points.

Definition 7.1 (T0). A topological space X is T0 if for every
pair of distinct points x ̸= y ∈ X there is an open subset of X
which contains one but not the other. In other words, for each pair
x ̸= y ∈ X there exists an open subset U ⊆ X such that either x ∈ U
and y /∈ U or x /∈ U and y ∈ U . Spaces which are T0 are sometimes
called Kolmogorov spaces; we will not use this terminology.

Figure 1: Diagram for T0 spaces.

Example 7.2. Every discrete space Xδ is T0.

Example 7.3. The Sierpiński space T is T0.

Example 7.4. Every metric space T is T0.

Example 7.5. If X is a set with at least two points, then Xtriv is
not T0.

Remark 7.6 (Topologically indistinguishable). Let X and Y
be a topological space. Say two points x, y ∈ X are topologically
indistinguishable if every open subset of X containing one contains
the other. The T0 axiom is very weak, but it is strong enough to
guarantee that no two distinct points of X are topologically indistin-
guishable.
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Definition 7.7 (T1). A topological space X is T1 if for every pair
of distinct points x ̸= y ∈ X there exist open subsets x ∈ U ⊆ X
and y ∈ V ⊆ X such that x /∈ V and y /∈ U .

Figure 2: Diagram for T1 spaces.

Lemma 7.8. A topological space X is T1 if and only if for every
x ∈ X the set {x} is closed.

Proof. Suppose that X is T1. Let x ∈ X. For each y ̸= x in X, let
Vy be an open subset of X which does not contain x. Let

V =
⋃
y ̸=x

Vy.

Then, V is open and V = X \{x}. Thus, {x} is closed. Conversely, if
each singleton is closed, then given x ̸= y in X we can set U = X\{y}
and V = X \ {x}. Then, x ∈ U , y ∈ V , but x /∈ V and y /∈ U . Thus,
X is T1.

Example 7.9. Every discrete space Xδ is T1.

Example 7.10. The Sierpiński space T is not T1.

Example 7.11. Every metric space T is T1.

Example 7.12. If X is a set with at least two points, then Xtriv is
not T1.

Exercise 7.13. If X is T1, then it is T0.

Exercise 7.14. Suppose that X is a finite T1 space, meaning it is
a topological space which is T1 and whose underlying set is a finite
set. Show that the topology on X is discrete.

By the far the most common separation axiom which comes up
in practice is the following.
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Definition 7.15 (T2 or Hausdorff). A topological space X is
T2, or Hausdorff, if for every pair of distinct points x ̸= y ∈ X there
exist open subsets x ∈ U ⊆ X and y ∈ V ⊆ X such that U ∩ V = ∅.

Figure 3: Diagram for T2 spaces.

Example 7.16. Every discrete space Xδ is T2.

Example 7.17. The Sierpiński space T is not T2.

Example 7.18. Every metric space T is T2.

Example 7.19. If X is a set with at least two points, then Xtriv is
not T2.

Exercise 7.20. Show that if X is T2, then it is T1.

Example 7.21. Recall the cofinite topology on N. The open sets
are either empty or consist of all but finitely many natural numbers.
This space is T1, but it is not T2.

Remark 7.22. There are additional separation axioms, where one
starts to separate points from closed sets, from disjoint closed sets,
etc. We might discuss them later.

Exercise 7.23. Show that if X and Y are Hausdorff, then so is
X × Y .

Exercise 7.24. Let X be a topological space. Show that the di-
agonal map f : X → X ×X, defined by f(x) = (x, x) for x ∈ X, is
continuous. Let ∆ = f(X) be the image of X, viewed as a subspace
of X ×X (so, a subset with the subspace topology). Show that X
is Hausdorff if and only if ∆ is closed in X ×X.
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