

Dual to the subspace topology is the quotient topology.

Example 6.1 (The quotient topology). Let X be a topological space and let Y be a set. Suppose that $q: X \rightarrow Y$ is a surjective function. We would like to equip Y with a sensible topology. To do so, let us examine the universal property we would like Y to possess. Given a topological space Z , let $C_Y(X, Z) \subseteq C(X, Z)$ be the subset of continuous functions $f: X \rightarrow Z$ which factor through q as functions of sets. This means that there is a function $h: Y \rightarrow Z$ such that $f = h \circ q$.

Note that f factors through q if and only if for each $y \in Y$ the function f is constant on the fiber $q^{-1}(y)$.

We would like a topology on Y such that q is continuous and such that the precomposition map $C(Y, Z) \xrightarrow{h \mapsto h \circ q} C_Y(X, Z)$ is a bijection. Since we assume q is continuous, we must have that if $V \subseteq Y$ is to be open, then $q^{-1}(V)$ is open. Let $\mathcal{V} \subseteq \mathbf{P}(Y)$ be the subset of subsets $V \subseteq Y$ such that $q^{-1}(V)$ is open. We call this the quotient topology on Y and we claim it satisfies the universal property above.

By construction, $q: X \rightarrow Y$ is continuous with respect to the quotient topology and one can check that precomposition $C(Y, Z) \rightarrow C_Y(X, Z)$ is injective. Indeed, since $q: X \rightarrow Y$ is surjective, for two functions $h_0, h_1: Y \rightarrow Z$ which are unequal at some point y of Y , the compositions $h_0 \circ q$ and $h_1 \circ q$ are unequal at every point of the nonempty set $q^{-1}(y)$. Suppose that $f \in C_Y(X, Z)$. So, f is a continuous function $X \rightarrow Z$ which factors set theoretically through Y . Write $f = h \circ q$ for a function $Y \rightarrow Z$. Since f is continuous, if $U \subseteq Z$ is open, $f^{-1}(U)$ is open. But, this means that $f^{-1}(U) = q^{-1}(h^{-1}(U))$ is open in X . By definition of the quotient topology, this means that $h^{-1}(U)$ is open in Y . Thus, h is continuous. This implies $C(Y, Z) \cong C_Y(X, Z)$, as desired.

Example 6.2. Let X be a topological space and let $A \subseteq X$ be a subset. Let $Y = X/A$ be the result of collapsing A to a single point $a \in Y$. Thus, the quotient map $q: X \rightarrow Y$ is a bijection away from A and $\{a\}$ and maps A onto $\{a\}$. If $U \subseteq X$ is an open set not intersecting A , then $q(U) \subseteq Y$ is open. Suppose that $V \subseteq Y$ is an open set containing a . Then, $q^{-1}(V)$ is an open subset of

X containing A . For example, if A was open to begin with, then $\{a\} \subseteq Y$ is open.

Example 6.3. Consider $X = [0, 1]$ and let $A = (0, 1) \subseteq X$. Then, X/A has three points: $0, 1, a$. The open subsets are

$$\{\emptyset, \{a\}, \{a, 0\}, \{a, 1\}, \{a, 0, 1\}\}.$$

Exercise 6.4. Let $S^1 \subseteq \mathbf{R}^2$ be the unit circle. Consider the surjective map $q: \mathbf{R}^1 \rightarrow S^1$ obtained by $q(t) = (\cos 2\pi t, \sin 2\pi t)$. Show that the quotient topology on S^1 induced by q coincides with the subspace topology.

Construction 6.5 (Epi-mono factorization). If $f: X \rightarrow Z$ is a map of sets, then f factors uniquely as a surjection followed by an injection: $f = i \circ q$. Indeed, we can let $i: Y \subseteq Z$ be the image of f and let $q: X \rightarrow Y$ be the factorization onto its image.

If X and Z are topological spaces, we can also produce such an epi-mono factorization, but now there are in general two choices for a topology on Y . We can give it the quotient topology or the subspace topology and obtain the factorization:

$$X \xrightarrow{q} Y^{\text{quotient}} \xrightarrow{j} Y^{\text{subspace}} \xrightarrow{i} Z. \quad (1)$$

Here, j is the identity function on the set Y and it is continuous as a map from the quotient topology to the subspace topology by continuity of f .

In practice one often wants to know that the map j appearing in (1) is a homeomorphism or in other words that the quotient and subspace topologies appearing above agree. Here are two criterian for this.

Definition 6.6. Let $f: X \rightarrow Y$ be a map of topological spaces.

- (i) We say that f is open if for every open subset $U \subseteq X$ the subset $f(U)$ of Y is open.
- (ii) We say that f is closed if for every closed subset $Z \subseteq X$ the subset $f(Z)$ of Y is closed.

Example 6.7. The function $f(x) = x^2$ from \mathbf{R} to \mathbf{R} is continuous, but not open: $f((-1, 1)) = [0, 1)$. It is closed; for example, for $0 \leq a \leq b$, $f([a, b]) = [a^2, b^2]$.

Proposition 6.8. *Let $f: X \rightarrow Y$ be a continuous surjection. If f is either open or closed, then Y has the quotient topology.*

Proof. Suppose that $U \subseteq Y$ is a subset such that $f^{-1}(U) \subseteq X$ is open. We want to know that U is open. (The converse holds by continuity of f .) However, $U = f(f^{-1}(U))$. The latter is open since f is open. The proof in the closed case is the same. \square

Remark 6.9. If $f: X \rightarrow Y$ is a surjective function, the inverse images $f^{-1}(y)$ form a partition of X . Conversely, given a partition of X into disjoint subsets $\{A_y\}_{y \in Y}$, we can construct a surjective function $f: X \rightarrow Y$ by setting $f(x) = y$ if $x \in A_y$. Thus, “surjections are equivalent to partitions”. These are also the same as equivalence relations.

Proposition 6.10. *Let $q: X \rightarrow Y$ be a surjective continuous function where Y has the quotient topology. Let \equiv be the equivalence relation on X associated to q . The following conditions are equivalent:*

- (a) q is open;
- (b) if $U \subseteq X$ is open, then the subset

$$U^\equiv = \{v \in X : \text{there exists } u \in U \text{ such that } v \equiv u\}$$

is open;

- (c) if $Z \subseteq X$ is closed, then

$$\bigcup_{y \in Y, f^{-1}(y) \subseteq Z} f^{-1}(y)$$

is closed.

Proof. If q is open, then $q(U)$ is open and hence $U^\equiv = q^{-1}(q(U))$ is open. Thus, (a) implies (b). Assume (b) and let $Z \subseteq X$ be closed. Let Z_\equiv be the union appearing in (c). We want to show Z_\equiv is closed. Let $U = X \setminus Z$ and consider U^\equiv , which is open by hypothesis. We can write $U^\equiv = \bigcup_{u \in U} f^{-1}(f(u))$. We claim that Z_\equiv is disjoint from U^\equiv and that their union is X . If x is in Z and $y \in X$ is equivalent to x , then $y \in Z_\equiv$ by definition and in particular, $y \in Z$. But, if $x \in U^\equiv$, then x is equivalent to some $z \in U$, so $z \in Z$, which is impossible. Thus, Z_\equiv and U^\equiv are disjoint. If $x \in X$ and x is not

in Z_{\equiv} , then $f^{-1}(f(z))$ intersects U , so by transitivity of \equiv , $x \in U^{\equiv}$. Since we assume U^{\equiv} is open, it follows that $Z_{\equiv} = X \setminus U^{\equiv}$ is closed. The proof that (c) implies (a) is left to the reader. \square

Exercise 6.11. Prove that (c) implies (a) in Proposition 6.10.

Remark 6.12. Proposition 6.10 is also true with all instances of “open” replaced by “closed” and vice versa.

Exercise 6.13. Consider the closed unit disc $D^n \subseteq \mathbf{R}^n$ for some $n \geq 1$. Let $S^{n-1} \subseteq D^n$ be its boundary. Prove that the quotient space D^n/S^{n-1} is homeomorphic to S^n .

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu