
Category, space, type - Benjamin Antieau
05. Universal properties: first examples

We have seen two constructions of topological spaces from given
ones: the subspace topology and the coproduct topology. These are
examples of universal properties, which we explain in this lecture. At
heart, universal properties are categorical properties, i.e., determined
by morphisms in an ambient category.

Example 5.1 (The subspace topology). Let X be a topological
space and let A ⊆ X be a subset. Let Y be another topological space.
Let CA(Y,X) be the set of continuous functions f : Y → X whose
image is contained in the subset A. We can also view A as a subspace
of X and consider C(Y,A), the set of continuous functions g : Y → A.
Let i : A → X be the continuous function giving the embedding from
A to X. Composition with i gives a function i ◦ (−) : C(Y,A) →
C(Y,X). Evidently, the image of i ◦ (−) is contained in CA(Y,X),
so we view it as a function i ◦ (−) : C(Y,A) → CA(Y,X). Claim:
this is a bijection. To see that it is injective, note that if g, g′ are
two continuous functions Y → A such that i ◦ g = i ◦ g′, then g = g′

since i : A → X is injective. To see that it is surjective, if f : Y → X
has image in A, let f : Y → A be the corresponding function on the
underlying sets. Then, f is continuous: if V ⊆ A is open in the
subspace topology, then V = A ∩ U for some U ⊆ X open. Since
the image of f is contained in A, we have f

−1
(V ) = f−1(U), which

is open in Y by continuity of f .
It follows that A with its subspace topology has a universal

property, which we can phrase as saying that continuous functions
Y → A are “the same” as continuous functions Y → X with image
in A.

We will formalize the meaning of universal properties in the next
lecture. Before doing that, we give two more examples.

Example 5.2 (The coproduct topology). Let X and Y be topo-
logical spaces and consider the coproduct X ⊔ Y , a new topological
space, as defined in Construction 4.21. The underlying set of X ⊔ Y
is the disjoint union of the underlying sets of X and Y . There
are inclusions i : X → X ⊔ Y and j : Y → X ⊔ Y . Suppose that
f : X ⊔ Y → Z is a continuous function. Then, we obtain continu-
ous functions f ◦ i : X → Z and f ◦ j : Y → Z. Put another way,
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precomposition with i and j induces a function

(∗) : C(X ⊔ Y, Z) → C(X,Z)× C(Y, Z)

given by
f 7→ (f ◦ i, f ◦ j).

We claim that (∗) is a bijection. If f ◦ i = f ′ ◦ i, then f and f ′ are
equal on X and if f ◦ j = f ′ ◦ j, then f and f ′ are equal on Y . Since
every element of X ⊔ Y is in either or X and Y , these statements
together imply injectivity. Suppose that a : X → Z and b : Y → Z
are continuous functions. Define f : X ⊔ Y → Z be the function
given by

f(w) =

{
a(w) if w ∈ X,
b(w) if w ∈ Y .

The function f is continuous by definition of the subspace topology.
Indeed, if U ⊆ Z is open, then f

−1
(U) = a−1(U)⊔ b−1(U), the union

of two open subsets of the coproduct. It follows that the function
(∗) is surjective and hence a bijection.

Thus, X ⊔ Y has a universal property: continuous functions
X ⊔ Y → Z are “the same” as pairs of continuous functions X → Z
and Y → Z.

Example 5.3 (The product topology). Now, suppose that X and
Y topological spaces. We want to define a topological space structure
on X × Y . Motivated by the previous example, we want at the very
least for the projections p : X × Y → X and q : X × Y → Y to be
continuous. Since p−1(U) = U×Y and q−1(V ) = X×V , we want the
subsets U × Y and X × V to be open whenever U ⊆ X and V ⊆ Y
are open. This collection of subsets by itself does not generally make
the product into a topological space because it is not closed under
finite intersections or unions. Let U be the topology generated by the
subsets of the form U × Y and X × V for U ⊆ X and V ⊆ Y open.
We claim that the projections p and q are continuous and that the
product topology has the following universal property: continuous
functions W → X×Y are “the same” as pairs of continuous functions
W → X and W → Z.

Continuity of the projections comes by definition of the topology.
Given a continuous function f : W → X × Y we can compose with p

2



and q to obtain continuous functions p◦f : W → X and q◦f : W → Y .
This defines a function

C(W,X × Y ) → C(W,X)× C(W,Y ). (1)

As above, we claim that (∗) is a bijection. We leave this as an
exercise.

Exercise 5.4. Prove that the function in (1) is a bijection.

Lemma 5.5. Let X be a set and let U′ ⊆ P(X) be a subset. There
is a unique smallest topology U on X containing U′.

Proof. There is at least one topology containing U′, namely the
discrete topology P(X). Given any collection {Ui}i∈I of topologies
containing U′ the intersection ∩i∈IUi is another topology containing
U′. By Zorn’s lemma, it follows that there are smallest topologies
containing U′. By the intersection property above, there is in fact a
unique smallest topology containing U′.

Definition 5.6 (Subbasis). Suppose that (X,U) is a topological
space and U is the smallest topology on X containing some U′ ⊆
P(X). Then, U′ is said to be a subbasis for the topology on X. We
also say that U is the topology generated by X.

Exercise 5.7. Let X be a topological space and let U′ be a collec-
tion of subsets of X. Show that U′ is a subbasis for the topology on
X if and only if the following two conditions hold:

(1) the elements of U′ are open;

(2) for every open U ⊆ X and every x ∈ U , there is a finite
collection V1, . . . , Vn ∈ U′ such that x ∈ V1 ∩ · · · ∩ Vn ⊆ U .

Definition 5.8 (Basis). Let X be a topological space. A basis
for X is a collection U′ of open subsets satisfying the following
conditions:

(a) the subsets in U′ are open;

(b) if U ⊆ X is open, then for every x ∈ U there exists V ∈ U′ such
that x ∈ V ⊆ U ;

(c) if V1, V2 ∈ U′ and x ∈ V1 ∩ V2, then there is V3 ∈ U′ such that
x ∈ V3 ⊆ V1 ∩ V2.
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Exercise 5.9. If X is a topological space and U′ is a basis for the
topology on X, then it is a subbasis for the topology on X.

Exercise 5.10. If X is a topological space and U′ is a basis for the
topology on X, then every open subset of X is a union of subsets in
U′.

Exercise 5.11. Suppose that X is a topological space and U′ is a
subbasis for the topology on X. Let U′′ ⊆ P(X) be the collection of
subsets obtained by intersecting finitely many subsets in U′. Show
that U′′ is a basis for the topology on X.

Example 5.12. A subbasis for the usual topology on R is given by
the collection of rays (−∞, a) and (b,∞) for a, b ∈ R. A basis for
the usual topology on R is given by the collection of open intervals
(a, b).

Remark 5.13. It follows that if U′ is a subbasis for a topology U on
X, then every open subset U of X is of the form

U =
⋃
i∈I

(
ai⋂
j=1

Uij

)

for some indexing set I, some integers ai ⩾ 1, and some Uij ∈ U′. In
other words, every open is a union of finite intersections of subbasis
elements.

Remark 5.14 (Return to the product topology). Let X and Y
be topological spaces. The collection U′ of open sets U × Y and
X × V , U ⊆ X and V ⊆ Y open, forms a subbasis for the product
topology on X × Y . Equivalently, it generates the product topology.
A basis for the product topology is given by U′′, the collection of
subsets of the form U × V for U ⊆ X and V ⊆ Y open.
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