
Category, space, type - Benjamin Antieau
04. Subspaces and connectedness

Suggested reading. Read Section 23 from Munkres; review exer-
cises 14.1 and 14.2.

Sets can be broken up into disjoint subsets at will. They do not
have internal structure to preserve.

Lemma 4.1. Let (X,U) be a topological space and let Y ⊆ X be a
subset. Consider the collection V of subsets of Y of the form U ∩ Y
where U ⊆ X is open. Then, (Y,V) is a topological space and the
inclusion i : Y ↪→ X is continuous.

Proof. We have i−1(U) = U ∩ Y , so the second statement follows
immediately once we have established the first. We have ∅ ∩ Y = ∅
and X ∩ Y = Y , so that ∅, Y ∈ V. Given a collection {Vi}i∈I ⊆ V,
for each i ∈ I, choose Ui open in X such that Vi = Ui ∩ Y . Then,
∪i∈IVi = ∪i∈I(Ui ∩ Y ) = (∪i∈IUi) ∩ Y , so that ∪i∈IVi ∈ V. We also
have ∩i∈IVi = ∩i∈I(Ui∩Y ) = (∩i∈IUi)∩Y . If I is finite, then ∩i∈IUi

is open, so ∩i∈IVi ∈ V. This completes the proof.

Definition 4.2 (Subspace). If X is a topological space a sub-
space is a subset Y ⊆ X equipped with the subspace topology
defined in Lemma 4.1.

Warning 4.3. Suppose that Y is a subspace of a topological space
X. Let A ⊆ Y be a subset. Whether A is open or not depends, in
general, on whether we view it as a subset of Y or X. For example,
Y is always open in itself, but might or might not be open in X.

Exercise 4.4. Let X be a topological space and let Y ⊆ X be a
subspace. Show that the following conditions are equivalent:

(i) a subset A ⊆ Y is open in Y if and only if it is open in X;

(ii) Y is open in X.

Exercise 4.5. Let X be a topological space and let Y ⊆ X be a
subspace. Show that A ⊆ Y is closed in Y if and only there is a
closed subset Z ⊆ X such that Z ∩ Y = A.

Example 4.6. A subspace of a discrete topological space is discrete.
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Example 4.7. A subspace of a topological space with the trivial
topology has the trivial topology.

Exercise 4.8. Suppose that N is the set of natural numbers with
the cofinite topology of Example 1.14. Let F ⊆ N is a finite subspace.
Show that the topology on F is discrete.

Now, we come to our first major topological property, connected-
ness.

Definition 4.9. Let X be a topological space. A subset U ⊆ X is
clopen if it is open and closed.

Remark 4.10. If X is a topological space, then ∅ and X are clopen
subsets of X.

Example 4.11. Let Xδ be a discrete topological space. Then, if
x ∈ X, the subset {x} ⊆ X is clopen.

Definition 4.12 (Connectedness). Say that a topological space
X is connected if it has no nonempty proper clopen subsets.

Equivalently, X is connected if its only clopen subsets are ∅, X.

Remark 4.13. Connectedness is a topological property of topological
spaces. If X and Y are homeomorphic topological spaces, then X is
connected if and only if Y is connected.

Example 4.14. The empty set is connected. This disagrees with the
convention of The Stacks Project.

Example 4.15. If X is a set, then Xtriv is connected.

Example 4.16. The Sierpiński space T is connected.

Example 4.17. If X is a set with at least two elements, then Xδ is
not connected.

Lemma 4.18. The topological space R is connected. Similarly, every
interval (a, b) or [a, b) or (a, b] or [a, b] for −∞ ⩽ a ⩽ b ⩽ ∞ is
connected.

Proof. We give the proof for R. Suppose that U ⊆ R is a nonempty
proper clopen subset. Let V = R \ U . Then, V is also proper,
nonempty, and clopen. Consider the function f : R → {0, 1}δ such
that f(u) = 0 for u ∈ U and f(v) = 1 for v ∈ V . Then, f is
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continuous. The inclusion i : {0, 1}δ ⊆ R is continuous. It follows
that i ◦ f : R → R is continuous. The intermediate value theorem
(which depends on the fact that every nonempty bounded above
subset of R has a least upper bound) leads to a contradiction.

Exercise 4.19. Let Q ⊆ R be the subspace of rational numbers.
Determine whether or not Q is connected.

Exercise 4.20. The cofinite topology on N is connected.

Construction 4.21 (The coproduct topology). Let X and Y
be topological spaces. Let Z = X ⊔ Y be the disjoint union of
X and Y . We define a topology on Z by saying that U ⊆ Z is open
if and only if U ∩X and U ∩ Y are open. In other words, the open
subsets of Z are precisely those which can be written as V ⊔W where
V ⊆ X and W ⊆ X are open. Note that the inclusions X ↪→ X ⊔ Y
and Y ↪→ X ⊔ Y are continuous.

Lemma 4.22. Suppose that X is not connected. Then, there are
disjoint nonempty clopen subspaces U, V ⊆ X such that the natural
map U ⊔ V → X is a homeomorphism.

Proof. As X is not connected, there is a nonempty proper clopen
subset U ⊆ X which we view as a subspace. Let V = X \ U . Since
U is a proper subset, V is nonempty. It is also clopen. As sets, we
have X = U ⊔ V . The natural inclusion i : U ⊔ V → X is continuous
by definition of the coproduct topology. It is also a bijection. Let
j : X → U ⊔ V be the inverse function. Let W ⊆ U ⊔ V be an open
subset. By definition, this means that W ∩ U ⊆ U is open and
W ∩V ⊆ V is open. Now, j−1(W ) = W = (W ∩U)∪ (W ∩V ). Since
W ∩U is open in U and U is open in X, we have that W ∩U is open
in X. Similarly, W ∩V is open in X. Thus, the union j−1(W ) is open
in X. Thus, j is continuous and hence i is a homeomorphism.

Example 4.23. [Invariance of domain I] The topological space R \
{0} is not connected. Indeed, (0,∞) and (−∞, 0) are nonempty
clopen disjoint subspaces whose union is R\{0}. On the other hand,
R2 \ {0} is connected. Suppose note and that R2 \ {0} = U ⊔ V is a
clopen decomposition with x ∈ U and y ∈ V . We can find γ : [0, 1] →
R2\{0} a continuous function such that γ(0) = x and γ(1) = y. Then,
γ−1(U) and γ−1(V ) are disjoint clopen subsets of [0, 1] containing x
and y, respectively. In particular, they are nonempty. Thus, [0, 1]
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is disconnected, which contradicts Lemma 4.18. It follows that R
and R2 are not homeomorphic. Indeed, if they were, then possibly
after applying a suitable translation we could assume the existence
of a homeomorphism f : R → R2 such that f(0) = 0. Then, f
would restrict to a homeomorphism f ′ : (R \ {0}) → (R2 \ {0}), a
contradiction.

Definition 4.24 (Path-connectedness). Let X be a topological
space. A path in X is a continuous function γ : [0, 1] → X. If
x, y ∈ X, a path in X from x to y is a path γ such that γ(0) = x
and γ(1) = y. We say that X is path-connected if for every x, y ∈ X
there is a path from x to y.

Example 4.25. Show that the Sierpiński space T is path-connected.

Exercise 4.26. Let X be a topological space. For x, y ∈ X, write
x ∼ y if there is path in X from x to y. Prove that ∼ is an equivalence
relation on the set of points of X.

The argument in Example 4.23 implies the following lemma.

Lemma 4.27. A path-connected topological space is connected.
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