Category, space, type - Benjamin Antieau
04. Subspaces and connectedness

Suggested reading. Read Section 23 from Munkres; review exer-
cises 14.1 and 14.2.

Sets can be broken up into disjoint subsets at will. They do not
have internal structure to preserve.

Lemma 4.1. Let (X,U) be a topological space and let Y C X be a
subset. Consider the collection 'V of subsets of Y of the form U NY
where U C X is open. Then, (Y,V) is a topological space and the
inclusion 1: Y — X is continuous.

Proof. We have i 1(U) = U NY, so the second statement follows
immediately once we have established the first. We have ) NY = ()
and X NY =Y, so that ;Y € V. Given a collection {V;}ic; C 7V,
for each ¢ € I, choose U; open in X such that V; = U; NY. Then,
UierVi = Uier(U; N YY) = (UserU;) NY, so that Ui, V; € V. We also
have miej‘/;' = mzel(Usz) = (szIUZ) NY. If Iis ﬁnite, then miEIUi
is open, so N;c;V; € V. This completes the proof. ]

Definition 4.2 (Subspace). If X is a topological space a sub-
space is a subset Y C X equipped with the subspace topology
defined in Lemma 4.1.

Warning 4.3. Suppose that Y is a subspace of a topological space
X. Let A CY be a subset. Whether A is open or not depends, in
general, on whether we view it as a subset of Y or X. For example,
Y is always open in itself, but might or might not be open in X.

Exercise 4.4. Let X be a topological space and let Y C X be a
subspace. Show that the following conditions are equivalent:

(i) a subset A C Y is open in Y if and only if it is open in X
(ii) Y is open in X.

Exercise 4.5. Let X be a topological space and let Y C X be a
subspace. Show that A C Y is closed in Y if and only there is a
closed subset Z C X such that ZNY = A.

Example 4.6. A subspace of a discrete topological space is discrete.



Example 4.7. A subspace of a topological space with the trivial
topology has the trivial topology.

Exercise 4.8. Suppose that N is the set of natural numbers with
the cofinite topology of Example 1.14. Let F' C N is a finite subspace.
Show that the topology on F' is discrete.

Now, we come to our first major topological property, connected-
ness.

Definition 4.9. Let X be a topological space. A subset U C X is
clopen if it is open and closed.

Remark 4.10. If X is a topological space, then () and X are clopen
subsets of X.

Example 4.11. Let X? be a discrete topological space. Then, if
x € X, the subset {z} C X is clopen.

Definition 4.12 (Connectedness). Say that a topological space
X is connected if it has no nonempty proper clopen subsets.

Equivalently, X is connected if its only clopen subsets are (), X.

Remark 4.13. Connectedness is a topological property of topological
spaces. If X and Y are homeomorphic topological spaces, then X is
connected if and only if Y is connected.

Example 4.14. The empty set is connected. This disagrees with the
convention of The Stacks Project.

Example 4.15. If X is a set, then X"V is connected.
Example 4.16. The Sierpinski space T is connected.

Example 4.17. If X is a set with at least two elements, then X?° is
not connected.

Lemma 4.18. The topological space R is connected. Similarly, every
interval (a,b) or [a,b) or (a,b] or [a,b] for —oco < a < b < 0 is
connected.

Proof. We give the proof for R. Suppose that U C R is a nonempty
proper clopen subset. Let V' = R\ U. Then, V is also proper,
nonempty, and clopen. Consider the function f: R — {0,1}° such
that f(u) = 0 for w € U and f(v) = 1 for v € V. Then, f is



continuous. The inclusion i: {0,1}° C R is continuous. It follows
that i o f: R — R is continuous. The intermediate value theorem
(which depends on the fact that every nonempty bounded above
subset of R has a least upper bound) leads to a contradiction. [J

Exercise 4.19. Let Q C R be the subspace of rational numbers.
Determine whether or not Q is connected.

Exercise 4.20. The cofinite topology on N is connected.

Construction 4.21 (The coproduct topology). Let X and Y
be topological spaces. Let Z = X UY be the disjoint union of
X and Y. We define a topology on Z by saying that U C Z is open
if and only if U N X and U NY are open. In other words, the open
subsets of Z are precisely those which can be written as V UW where
V C X and W C X are open. Note that the inclusions X — X LY
and Y — X UY are continuous.

Lemma 4.22. Suppose that X is not connected. Then, there are
disjoint nonempty clopen subspaces U,V C X such that the natural
map U UV — X is a homeomorphism.

Proof. As X is not connected, there is a nonempty proper clopen
subset U C X which we view as a subspace. Let V' = X \ U. Since
U is a proper subset, V' is nonempty. It is also clopen. As sets, we
have X = U UV. The natural inclusion ¢: U UV — X is continuous
by definition of the coproduct topology. It is also a bijection. Let
j: X = U UV be the inverse function. Let W C U LUV be an open
subset. By definition, this means that W NU C U is open and
WNV CVisopen. Now, j Y (W) =W = (WnU)U(WNV). Since
W NU is open in U and U is open in X, we have that W NU is open
in X. Similarly, WNV is open in X. Thus, the union j7*(W) is open
in X. Thus, j is continuous and hence ¢ is a homeomorphism. [

Example 4.23. [Invariance of domain I| The topological space R\
{0} is not connected. Indeed, (0,00) and (—o0,0) are nonempty
clopen disjoint subspaces whose union is R\ {0}. On the other hand,
R?\ {0} is connected. Suppose note and that R*\ {0} = U UV is a
clopen decomposition with z € U and y € V. We can find v: [0,1] —
R?\{0} a continuous function such that y(0) = z and y(1) = y. Then,
7~ HU) and v~1(V) are disjoint clopen subsets of [0, 1] containing x
and y, respectively. In particular, they are nonempty. Thus, [0, 1]



is disconnected, which contradicts Lemma 4.18. It follows that R
and R? are not homeomorphic. Indeed, if they were, then possibly
after applying a suitable translation we could assume the existence
of a homeomorphism f: R — R? such that f(0) = 0. Then, f
would restrict to a homeomorphism f': (R \ {0}) — (R?*\ {0}), a
contradiction.

Definition 4.24 (Path-connectedness). Let X be a topological
space. A path in X is a continuous function v: [0,1] — X. If
z,y € X, a path in X from x to y is a path v such that v(0) = z
and v(1) = y. We say that X is path-connected if for every z,y € X
there is a path from z to y.

Example 4.25. Show that the Sierpiriski space T' is path-connected.

Exercise 4.26. Let X be a topological space. For x,y € X, write
x ~ g if there is path in X from x to y. Prove that ~ is an equivalence
relation on the set of points of X.

The argument in Example 4.23 implies the following lemma.

Lemma 4.27. A path-connected topological space is connected.
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