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02. Categories

We introduce categories in order to study the relationships between
different topological spaces. The word category should evoke the
idea of isolating a certain type of object, in our case mathematical
objects. The most basic type of object is that of a set. Besides sets
themselves, we also have functions between sets and compositions
of such functions and these satisfy certain properties. A category is
an abstraction of this relationship between sets and the functions
between them.

Definition 2.1 (Categories). A category C consists of the fol-
lowing data:

(i) a class of objects Ob(C);

(ii) for every pair z,y € Ob(C) a set Home(z,y), whose elements
are the morphisms from z to y;
(iii) for every triple z,y,z € Ob(C) a composition map
Home(y, z) x Home(z, y) 19 )mg0], Home(z, 2);
(iv) for every x € Ob(C) a distinguished morphism id, € Home(z, x).
This data is required to satisfy the following conditions:

(a) for every pair x,y € Ob(C€) and every f € Home(z,y) one has
f:foidz:idyof;
(b) for every quadruple w, x,y, z and every triple of morphisms f €

Home(w, x), g € Home(x,y), h € Home(y, 2), the compositions
ho(go f)and (hog)o f are equal in Home(w, 2).

Condition (a) is called unitality while (b) is associativity.
Notation 2.2. If Cis a category, we will simply write x € C if we

mean that x € Ob(€). We write f: x — y or x ER y to denote that
f € Home(z,y).

Example 2.3. Let Set denote the category of sets. The class of
objects is the proper class of all sets (see Remark 2.4); the morphisms
are functions between sets; composition is composition of functions.
Given a set X, the distinguished function idy € Homge (X, X) is
the usual identity function defined by f(z) =z for all x € X.



Remark 2.4. We are not going to get bogged down in the foundations
of set theory. Russell’s paradox is that if one allows for a set of all
sets S one can obtain a contradiction by considering the set C' C S
of sets which contain themselves. Ponder the question of whether
C € C. In order to make sense of a notion of a collection of all
sets without falling prey to Russell’s paradox, set theorists have
introduced a notion of classes, which include sets and classes which
are not sets; the latter are called proper classes. One axiomatization
is due to von Neumann-Bernays-Godel (NBG); it is an extension of
the standard “Zermelo—Fraenkel with the axiom of choice” approach
to set theory (ZFC). The basic relation is still containment €. The
main thing to remember is that if x € y, then x must be a set; y can
be a set or a proper class. There is a proper class of all sets.

What we have defined above is what is sometimes called a locally
small category. There is a variant where the Home(x,y) are allowed
to be proper classes. We will not use this generality in these notes, so
for us a category will always mean a locally small category, as given
in Definition 2.1. On the other hand, if Ob(€) is a set as opposed
to a proper class, then we say that C is a small category. If € is not
small, we say it is large. The category Set is large.

Example 2.5. The empty set () forms a category, also denoted (), in
a natural way.

Example 2.6. Let Group denote the large category of groups. The
class of objects is the proper class of all groups, the morphisms are
group homomorphisms, and composition is as usual.

Example 2.7. Let k£ be a field. Let Vect, be the large category
of k-vector spaces. The class of objects is the proper class of all
k-vector spaces and the morphisms are k-linear transformations.

Example 2.8. Let C be the small category whose objects are nat-
ural numbers n > 0 and where Home(m, n) is equal to the set of
infinitely differentiable functions R™ — R". Composition is given
by composition of functions.

There are more exotic examples.

Exercise 2.9. Let M be a monoid. Recall that this is a set
equipped with an associative, unital binary operation M x M —
M. Define a small category BM with a single object * where



Homgy (%, %) = M and where composition is given by the monoid
operation.

Exercise 2.10. Show conversely that if C is a category and x € C,
then composition makes Home(z, z) into a monoid with unit id,.

Example 2.11 (Posets). Let (P, <) be a poset, i.e., a set with a
binary relation which is reflexive, transitive, and antisymmetric. We
can view P as a category as follows. Given z,y € P, let

x if x <y,
® otherwise.

Homp(z,y) = {

Thus, given x,y € P, there is at most one map from x to y, defined
if and only if x < y. Composition is well-defined thanks to the
transitivity of < for posets.

Definition 2.12 (Isomorphism). There is a notion of ‘sameness’
internal to any category €. A map f: x — y in € is an isomorphism
if there is a map ¢g: y — x such that go f = id, and f o g = id,,.
If an isomorphism f: z — y exists, then x and y are said to be
isomorphic; this is written symbolically as x =2 .

Isomorphic objects are to be viewed as having the same properties
in the same way that the sets {1,2,3} and {a, b, ¢}, while not equal,
behave identically in the category Set.

Exercise 2.13. A map f: X — Y of sets is an isomorphism (i.e.,
in the category Set) if and only if it is a bijection.

Exercise 2.14. Let C be a category.
(i) Show that every object x € C is isomorphic to itself.
(ii) Show that if z = y and y = z, then o = 2.

(iii) Show that if f: x — y is an isomorphism, then if g, h: y — =
satisfy go f =ho f =id, and fog= foh =1id,, then g = h.
Thus, inverses, when they exist, are unique. We write f~! for
the inverse, when it exists.

Exercise 2.15. Show that if z = y in a poset P, then x = y.

Definition 2.16 (Groupoids). Let € be a category. If every mor-
phism in € is an isomorphism, then € is called a groupoid.



The terminology is motivated by the following example.

Exercise 2.17. Let M be a monoid. Show that BM is a groupoid
if and only if M is a group.

Exercise 2.18. Characterize the posets P which are groupoids.

Example 2.19 (Walking isomorphism). Consider the small cate-
gory € with set of objects {0,1} and where all Hom sets consist of a
single element. This is a groupoid whose nonidentity morphisms can
be displayed as follows:

Definition 2.20 (Thin categories). A category C is thin if
Home (.CE, y)

consists of at most 1 element for all z,y € €. A poset when viewed
as a category is thin. So is the walking isomorphism. The category
Set is not thin.

Example 2.21. Let M be a monoid. The category BM is thin if
and only if M = x is the trivial monoid.

We see that categories can be used both as an organizing principle,
as in the cases of Set, Group, or Vect,, but they can also be used
as combinatorial objects as in the case of posets.

Lemma 2.22. Let C be a thin small category. For z,y € C, say that
x <y if and only if Home(z,y) is nonempty. This relation makes
Ob(C) into a poset if and only if € has no non-identity isomorphisms.

Proof. Suppose that the relation z < y makes Ob(C) into a poset.
Then, if z Sy and y S, then z = y. If f: x — y is a non-identity
isomorphism with inverse g, then x # y but * < y and y < z, a
contradiction.

Conversely, suppose that € has no non-identity isomorphisms. The
relation < is reflexive since Home(z, ) contains id, for all z € C.
It is transitive since if Home(y, z) is nonempty and Home(z,y) is
nonempty, so is Home(z, 2z) by composition. It is antisymmetric
because there are no non-identity isomorphisms. ]



Exercise 2.23. A preorder is a set P equipped with a binary rela-
tion < which is reflexive and transitive. Show that every preorder
gives rise to a small thin category and conversely every small thin
category induces the structure of a preorder on its set of objects.

Example 2.24. The walking isomorphism is the basic example of a
preorder which is not a poset.
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