

Category, space, type - Benjamin Antieau
 02. Categories

We introduce categories in order to study the relationships between different topological spaces. The word category should evoke the idea of isolating a certain type of object, in our case mathematical objects. The most basic type of object is that of a set. Besides sets themselves, we also have functions between sets and compositions of such functions and these satisfy certain properties. A category is an abstraction of this relationship between sets and the functions between them.

Definition 2.1 (Categories). A category \mathcal{C} consists of the following data:

- (i) a class of objects $\text{Ob}(\mathcal{C})$;
- (ii) for every pair $x, y \in \text{Ob}(\mathcal{C})$ a set $\text{Hom}_{\mathcal{C}}(x, y)$, whose elements are the morphisms from x to y ;
- (iii) for every triple $x, y, z \in \text{Ob}(\mathcal{C})$ a composition map

$$\text{Hom}_{\mathcal{C}}(y, z) \times \text{Hom}_{\mathcal{C}}(x, y) \xrightarrow{(g, f) \mapsto g \circ f} \text{Hom}_{\mathcal{C}}(x, z);$$

- (iv) for every $x \in \text{Ob}(\mathcal{C})$ a distinguished morphism $\text{id}_x \in \text{Hom}_{\mathcal{C}}(x, x)$.

This data is required to satisfy the following conditions:

- (a) for every pair $x, y \in \text{Ob}(\mathcal{C})$ and every $f \in \text{Hom}_{\mathcal{C}}(x, y)$ one has $f = f \circ \text{id}_x = \text{id}_y \circ f$;
- (b) for every quadruple w, x, y, z and every triple of morphisms $f \in \text{Hom}_{\mathcal{C}}(w, x)$, $g \in \text{Hom}_{\mathcal{C}}(x, y)$, $h \in \text{Hom}_{\mathcal{C}}(y, z)$, the compositions $h \circ (g \circ f)$ and $(h \circ g) \circ f$ are equal in $\text{Hom}_{\mathcal{C}}(w, z)$.

Condition (a) is called unitality while (b) is associativity.

Notation 2.2. If \mathcal{C} is a category, we will simply write $x \in \mathcal{C}$ if we mean that $x \in \text{Ob}(\mathcal{C})$. We write $f: x \rightarrow y$ or $x \xrightarrow{f} y$ to denote that $f \in \text{Hom}_{\mathcal{C}}(x, y)$.

Example 2.3. Let **Set** denote the category of sets. The class of objects is the proper class of all sets (see Remark 2.4); the morphisms are functions between sets; composition is composition of functions. Given a set X , the distinguished function $\text{id}_X \in \text{Hom}_{\text{Set}}(X, X)$ is the usual identity function defined by $f(x) = x$ for all $x \in X$.

Remark 2.4. We are not going to get bogged down in the foundations of set theory. Russell's paradox is that if one allows for a set of all sets S one can obtain a contradiction by considering the set $C \subseteq S$ of sets which contain themselves. Ponder the question of whether $C \in C$. In order to make sense of a notion of a collection of all sets without falling prey to Russell's paradox, set theorists have introduced a notion of classes, which include sets and classes which are not sets; the latter are called proper classes. One axiomatization is due to von Neumann–Bernays–Gödel (NBG); it is an extension of the standard “Zermelo–Fraenkel with the axiom of choice” approach to set theory (ZFC). The basic relation is still containment \in . The main thing to remember is that if $x \in y$, then x must be a set; y can be a set or a proper class. There is a proper class of all sets.

What we have defined above is what is sometimes called a *locally small* category. There is a variant where the $\text{Hom}_{\mathcal{C}}(x, y)$ are allowed to be proper classes. We will not use this generality in these notes, so for us a category will always mean a locally small category, as given in Definition 2.1. On the other hand, if $\text{Ob}(\mathcal{C})$ is a set as opposed to a proper class, then we say that \mathcal{C} is a small category. If \mathcal{C} is not small, we say it is large. The category **Set** is large.

Example 2.5. The empty set \emptyset forms a category, also denoted \emptyset , in a natural way.

Example 2.6. Let **Group** denote the large category of groups. The class of objects is the proper class of all groups, the morphisms are group homomorphisms, and composition is as usual.

Example 2.7. Let k be a field. Let **Vect** $_k$ be the large category of k -vector spaces. The class of objects is the proper class of all k -vector spaces and the morphisms are k -linear transformations.

Example 2.8. Let \mathcal{C} be the small category whose objects are natural numbers $n \geq 0$ and where $\text{Hom}_{\mathcal{C}}(m, n)$ is equal to the set of infinitely differentiable functions $\mathbf{R}^m \rightarrow \mathbf{R}^n$. Composition is given by composition of functions.

There are more exotic examples.

Exercise 2.9. Let M be a monoid. Recall that this is a set equipped with an associative, unital binary operation $M \times M \rightarrow M$. Define a small category BM with a single object $*$ where

$\text{Hom}_{\text{BM}}(*, *) = M$ and where composition is given by the monoid operation.

Exercise 2.10. Show conversely that if \mathcal{C} is a category and $x \in \mathcal{C}$, then composition makes $\text{Hom}_{\mathcal{C}}(x, x)$ into a monoid with unit id_x .

Example 2.11 (Posets). Let (P, \leqslant) be a poset, i.e., a set with a binary relation which is reflexive, transitive, and antisymmetric. We can view P as a category as follows. Given $x, y \in P$, let

$$\text{Hom}_P(x, y) = \begin{cases} * & \text{if } x \leqslant y, \\ \emptyset & \text{otherwise.} \end{cases}$$

Thus, given $x, y \in P$, there is at most one map from x to y , defined if and only if $x \leqslant y$. Composition is well-defined thanks to the transitivity of \leqslant for posets.

Definition 2.12 (Isomorphism). There is a notion of ‘sameness’ internal to any category \mathcal{C} . A map $f: x \rightarrow y$ in \mathcal{C} is an isomorphism if there is a map $g: y \rightarrow x$ such that $g \circ f = \text{id}_x$ and $f \circ g = \text{id}_y$. If an isomorphism $f: x \rightarrow y$ exists, then x and y are said to be isomorphic; this is written symbolically as $x \cong y$.

Isomorphic objects are to be viewed as having the same properties in the same way that the sets $\{1, 2, 3\}$ and $\{a, b, c\}$, while not equal, behave identically in the category **Set**.

Exercise 2.13. A map $f: X \rightarrow Y$ of sets is an isomorphism (i.e., in the category **Set**) if and only if it is a bijection.

Exercise 2.14. Let \mathcal{C} be a category.

- (i) Show that every object $x \in \mathcal{C}$ is isomorphic to itself.
- (ii) Show that if $x \cong y$ and $y \cong z$, then $x \cong z$.
- (iii) Show that if $f: x \rightarrow y$ is an isomorphism, then if $g, h: y \rightarrow x$ satisfy $g \circ f = h \circ f = \text{id}_x$ and $f \circ g = f \circ h = \text{id}_y$, then $g = h$. Thus, inverses, when they exist, are unique. We write f^{-1} for the inverse, when it exists.

Exercise 2.15. Show that if $x \cong y$ in a poset P , then $x = y$.

Definition 2.16 (Groupoids). Let \mathcal{C} be a category. If every morphism in \mathcal{C} is an isomorphism, then \mathcal{C} is called a groupoid.

The terminology is motivated by the following example.

Exercise 2.17. Let M be a monoid. Show that BM is a groupoid if and only if M is a group.

Exercise 2.18. Characterize the posets P which are groupoids.

Example 2.19 (Walking isomorphism). Consider the small category \mathcal{C} with set of objects $\{0, 1\}$ and where all Hom sets consist of a single element. This is a groupoid whose nonidentity morphisms can be displayed as follows:

$$0 \begin{array}{c} \swarrow \curvearrowright \\ \uparrow \end{array} 1.$$

Definition 2.20 (Thin categories). A category \mathcal{C} is thin if

$$\text{Hom}_{\mathcal{C}}(x, y)$$

consists of at most 1 element for all $x, y \in \mathcal{C}$. A poset when viewed as a category is thin. So is the walking isomorphism. The category **Set** is not thin.

Example 2.21. Let M be a monoid. The category BM is thin if and only if $M = *$ is the trivial monoid.

We see that categories can be used both as an organizing principle, as in the cases of **Set**, **Group**, or **Vect** $_k$, but they can also be used as combinatorial objects as in the case of posets.

Lemma 2.22. Let \mathcal{C} be a thin small category. For $x, y \in \mathcal{C}$, say that $x \lesssim y$ if and only if $\text{Hom}_{\mathcal{C}}(x, y)$ is nonempty. This relation makes $\text{Ob}(\mathcal{C})$ into a poset if and only if \mathcal{C} has no non-identity isomorphisms.

Proof. Suppose that the relation $x \lesssim y$ makes $\text{Ob}(\mathcal{C})$ into a poset. Then, if $x \lesssim y$ and $y \lesssim x$, then $x = y$. If $f: x \rightarrow y$ is a non-identity isomorphism with inverse g , then $x \neq y$ but $x \lesssim y$ and $y \lesssim x$, a contradiction.

Conversely, suppose that \mathcal{C} has no non-identity isomorphisms. The relation \lesssim is reflexive since $\text{Hom}_{\mathcal{C}}(x, x)$ contains id_x for all $x \in \mathcal{C}$. It is transitive since if $\text{Hom}_{\mathcal{C}}(y, z)$ is nonempty and $\text{Hom}_{\mathcal{C}}(x, y)$ is nonempty, so is $\text{Hom}_{\mathcal{C}}(x, z)$ by composition. It is antisymmetric because there are no non-identity isomorphisms. \square

Exercise 2.23. A preorder is a set P equipped with a binary relation \lesssim which is reflexive and transitive. Show that every preorder gives rise to a small thin category and conversely every small thin category induces the structure of a preorder on its set of objects.

Example 2.24. The walking isomorphism is the basic example of a preorder which is not a poset.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu