
Category, space, type - Benjamin Antieau
01. What is a topological space?

The definition of topological spaces was given by Hausdorff in 1914.
It aims to capture some of the qualitative notions of geometry and
analysis divorced from quantities like distance and angle. In the
intervening years, it has come to be adapted by the mathematical
community as the correct definition giving a substrate upon which to
build more complicated structures. One of the themes of this course
is to play with this definition and see how it relates to other possible
definitions.

The terminology of topological spaces is motivated by the example
of the ‘space’ R of real numbers, the real number line. Certain
subsets, like (0, 1) ⊆ R, are considered to be open, while other, like
[0, 1], are considered to be closed. This terminology is familiar from
school. The closed subsets are characterized by being closed under
taking limits of sequences. For example, the sequence 1

n
lies entirely

within (0, 1), but its limit point 0 is not in (0, 1), whereas it does
certainly stay inside the larger subset [0, 1].

Alternatively, the open subsets are ones which are closed under
small perturbations. A point inside an open subset like (0, 1), if it is
wiggled a very small amount will stay inside (0, 1). The amount of
wiggle allowed will depend on the point. But, if one wiggles 0 any
amount, it will probably fall off of [0, 1].

Taking intuition from this example, we will study topological
spaces which do not arise necessarily from the study of classical
geometry or calculus. The motivation for the development of this
theory historically is due to these sources. Especially troubling was
the problem of determining which functions could be approximated
by Fourier series. This required notions of convergence for sequences
not in R but in ‘spaces’ whose points were functions on other spaces.
These objects look rather exotic from the perspective of euclidean or
cartesian geometry.

We have the following requirements for a good theory of ‘space’:

(1) it should distinguish between Rm and Rn for m ̸= n;

(2) it should support a rich palette of examples, both classical and
exotic;
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(3) it should include the standard examples from analysis, including
Rn but also ‘spaces’ of continuous or differentiable functions;

(4) it should give meaning to the closedness of [0, 1] ⊆ R and the
openness of (0, 1) ⊆ R;

(5) it should support a notion of convergence, as in limn→∞
1
n
= 0;

(6) it should explain how [0, 1] is finite, whereas [0,∞) is not;

(7) it should have a good notion of functions between ‘spaces’;

(8) it should be able to see the difference between (0, 1) and (0, 1)∪
(2, 3) in that the former should be ‘connected’ and the latter
should be ‘disconnected’

(9) it should have a sense of completeness and know how to pass
from Q to R.

Many of these requirements are satisfied by the related theory of
metric spaces, which is discussed below. However, the following
definition turns out to be more flexible and more suitable as a notion
of ‘space’ for all of mathematics.

Definition 1.1 (Topological space). A topological space is a
pair (X,U) where X is a set and U ⊆ P(X) is a set of subsets of X
satisfying the following conditions:

(i) ∅, X ∈ U;

(ii) for every finite set U1, . . . , Un of subsets in U, the intersection
U1 ∩ · · · ∩ Un is in U;

(iii) for every subset {Ui}i∈I ⊆ U, the union ∪i∈IUi is in U.

The elements of U are called opens in X or open subsets of X.

Definition 1.2 (Closed sets). Let (X,U) be a topological space.
A subset Y ⊆ X is called closed if X \ Y is open. The closed sub-
sets of X satisfy similar axioms to those appearing in Definition 1.1
except they are closed under arbitrary intersections but only finite
unions. The open subsets determine the closed subsets and vice
versa, so an alternative, equivalent way to define a topological space
is via its closed subsets.
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Example 1.3 (The discrete topology). The pair (X,P(X)) is a
topological space; this is the discrete topology on X. Every subset
of X is declared to be open. We will write Xδ for a set X equipped
with the discrete topology.

Example 1.4 (The trivial topology). The pair (X, {∅, X}) is a
topological space, the trivial topology on X. Only ∅ and X are open.
Let Xtriv denote a set X with the trivial topology.

Definition 1.5 (Metric spaces). A metric space is a pair (X, d)
where X is a set and d : X ×X → R is a function such that

(a) d(x, y) = 0 if and only if x = y,

(b) d(x, y) = d(y, x) for all x, y ∈ X, and

(c) d(x, z) ⩽ d(x, y) + d(y, z) for all x, y, z ∈ X.

The last condition is called the triangle inequality. Say that U ⊆ X
is d-open if it satisfies the following property: for each u ∈ U there
exists an ϵ > 0 such that if d(u, x) < ϵ, then x ∈ U . Let U be the
collection of d-open subsets. Then, U defines a topology on the set
X as is shown in Lemma 1.9 below.

Example 1.6 (Euclidean space). In this course, we will consider
Rn as a metric space via the euclidean distance function and as a
topological space via the topology associated to d. Recall that if
x, y ∈ Rn have coordinates (x1, . . . , xn) and (y1, . . . , yn), then the
euclidean distance between them is

d(x, y) = +
√
(y1 − x1)2 + · · ·+ (yn − xn)2.

The term (y1 − x1)
2 + · · ·+ (yn − xn)

2 is always a nonnegative real
number. It is zero if and only if xi = yi for i = 1, . . . , n, i.e., if and
only if x = y. This is condition (a) for a metric. We also have that
(yi − xi)

2 = (xi − yi)
2 for all i, so condition (b) holds. Condition (c)

is more complicated and follows from the Cauchy–Schwarz inequality(
n∑

i=1

aibi

)2

⩽

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
for real numbers a1, . . . , an, b1, . . . , bn.

The open subsets of Rn are unions of small open disks. If (X, d)
is a metric space, x ∈ X is a point, and ϵ > 0 is a positive real
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number, then let Bϵ(x) ⊆ X be the set of all points y ∈ X such that
d(x, y) < ϵ. This is the open ball of radius ϵ around x. It is a d-open
subset by the triangle inequality.

Exercise 1.7. Show that if (X, d) is a metric space, then the open
balls Bϵ(x) are d-open subsets.

Exercise 1.8. (i) Find and understand a proof of the Cauchy–
Schwarz inequality, for example by consulting any textbook on
real analysis.

(ii) Use the Cauchy–Schwarz inequality to prove the triangle in-
equality for the euclidean distance function.

Lemma 1.9. Let (X, d) be a metric space. If U is the set of d-open
subsets of X, then (X,U) is a topological space.

Proof. The empty set and X itself are both d-open. If U1, . . . , Un are
d-open subsets and u ∈ U1 ∩ · · · ∩ Un, then there are real numbers
ϵ1, . . . , ϵn > 0 such that if d(u, x) < ϵi, then x ∈ Ui for i = 1, . . . , n.
Let ϵ = min{ϵ1, . . . , ϵn}. Then, if d(u, x) < ϵ, we must have x ∈
U1, . . . , Un, or in other words x ∈ U1 ∩ · · · ∩ Un. It follows that
U1 ∩ · · · ∩ Un is d-open. If {Ui}i∈I is a collection of d-open subsets,
let U = ∪i∈IUi. If u ∈ U , then u ∈ Ui for some i ∈ I. Pick ϵ > 0
such that if d(u, x) < ϵ, then x ∈ Ui. Then, if d(u, x) < ϵ, x ∈ U . It
follows that U is d-open. We have verified conditions (i), (ii), and
(iii) for the collection U of d-open subsets, so (X,U) is a topological
space.

Remark 1.10 (Metrizable spaces). A topological space (X,U) is
said to be metrizable if there exists a metric d on X such that U

is equal to the collection of d-open sets. Note that if α > 0 is any
positive real number, then if (X,U) is metrized by a metric d, then
it is also metrized by αd. The open sets do not change under scaling.
One reason that topological spaces are favored over metric spaces is
that specifying a metric seems to be overkill. Of course, for other,
geometric problems, the specification of a metric is crucial.

Example 1.11 (The other topology on two points). Consider
the topology on {0, 1} with U = {∅, {0}, {0, 1}}. This is neither the
trivial nor the discrete topology. It is also not metrizable as Ex-
ercise 1.13 shows. In the literature, this is called the Sierpiński
space.
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Exercise 1.12. Write down all topologies on the set {1, 2, 3}.

Exercise 1.13. Show that if (X,U) is a finite metrizable topological
space, then U is the discrete topology on X.

Example 1.14 (The cofinite topology). Let X be a set and let
U ⊆ P(X) be the set of subsets U ⊆ X such that X \ U is a finite
set (such subsets are called cofinite) together with the empty set.
Then, (X,U) is a topological space.

Remark 1.15 (Infinite intersections). The definition of a topo-
logical space requires that the open subsets are closed under arbitrary
unions but only finite intersections. In R we see that that open
subsets are unions of open intervals of the form (a, b). However,
consider the family {(− 1

n
, 1
n
)}n⩾1 of open subsets of R. This family

has intersection ⋂
n⩾1

(− 1
n
, 1
n
) = {0},

which is not open in R. Some topological spaces have the property
that their open subsets are closed under arbitrary intersections.
These are called Alexandrov spaces.
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