

Category, space, type - Benjamin Antieau
Problem set 02. Compactness

Problem 1.1 (Tube lemma). Let X and Y be topological spaces and assume that X is compact. Fix $y \in Y$ and suppose that $U \subseteq X \times Y$ is an open subset containing $X \times \{y\}$. Show that there is an open subset $V \subseteq Y$ containing y such that U contains $X \times V$.

Problem 1.2 (Compactness of products). Let X and Y be compact topological spaces. Show that $X \times Y$ is compact. Conclude that if X_1, \dots, X_n are compact topological spaces, then $\prod_{i=1}^n X_i$ is compact.

Problem 1.3 (Finite intersection property). Let X be a set and let $\mathcal{C} \subseteq \mathbf{P}(X)$ be a set of subsets of X . Say that \mathcal{C} has the finite intersection property if for every sequence C_1, \dots, C_n of elements of \mathcal{C} , the intersection $C_1 \cap \dots \cap C_n$ is nonempty.

Show that X is compact if and only if for every collection \mathcal{C} of closed subsets of X which satisfies the finite intersection property the intersection

$$\bigcap_{C \in \mathcal{C}} C$$

is nonempty.

Problem 1.4 (Compactness of closed intervals). Come up with the “real analysis” proof of the fact that $[0, 1] \subseteq \mathbf{R}$ is compact.

Problem 1.5 (Compactness and subbasis). Let \mathcal{B} be a subbasis for a topology \mathcal{U} on X . Suppose that every open cover \mathcal{C} of X such that $\mathcal{C} \subseteq \mathcal{B}$ has a finite subcover. Show that X is compact.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY
antieau@northwestern.edu